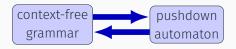
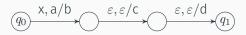
PDA and CFG conversions


CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

CFGs and PDAs


L has a context-free grammar if and only if it is accepted by some pushdown automaton.

Will first convert CFG to PDA

Convention

A sequence of transitions like

will be abbreviated as

$$q_0$$
 $\xrightarrow{x, a/bcd} q_1$

replace a by bcd on stack

Converting a CFG to a PDA

$$A \rightarrow 0A1$$

$$A \to B$$

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

$$B \to \#$$

Rules:

- 1. Write the start symbol A onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production

PDA control		stack	input
write start variable	$\varepsilon, \varepsilon/A$	\$A	00#11
replace by production in reverse	$\varepsilon, A/1A0$	\$1A0	00#11

Converting a CFG to a PDA

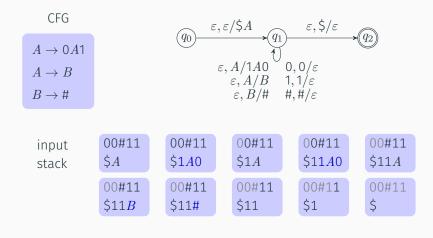
Idea: Use PDA to simulate derivations

 $A \rightarrow 0A1$

 $A \to B$

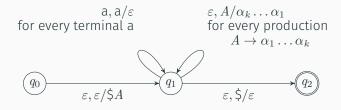
Example:

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

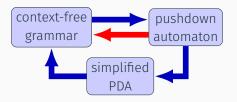

 $B \to \#$

Rules:

- 1. Write the start symbol A onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production
- 3. Pop top terminal if it matches input


PDA control		stack	input
write start variable	$\varepsilon, \varepsilon/A$	\$A	00#11
replace by production in reverse	ε , $A/1A0$	\$1 <i>A</i> 0	00#11
pop terminal and match	$0,0/\varepsilon$	\$1A	0#11
replace by production in reverse	$\varepsilon, A/1A0$	\$11 <i>A</i> 0	0#11

Converting a CFG to a PDA



$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

General CFG to PDA conversion

From PDAs to CFGs



Simplified pushdown automaton:

- · Has a single accepting state
- Empties its stack before accepting
- · Each transition is either a push, or a pop, but not both

Simplifying the PDA

Single accepting state

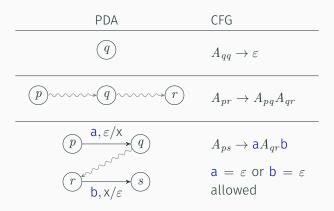
Empties its stack before accepting

 ε , a/ ε for every stack symbol a

Simplifying the PDA

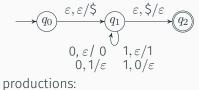
Each transition either pushes or pops, but not both

$$\begin{array}{ccc}
 & \underbrace{a, b/c} \\
 & \underbrace{q_0} \\
 & \underbrace{a, b/\varepsilon} \\
 & \underbrace{q_0} \\
 & \underbrace{a, c/b} \\
 & \underbrace{q_0} \\
 & \underbrace{a, \varepsilon/b} \\
 & \underbrace{a,$$


Simplified PDA to CFG

For every pair (q,r) of states in PDA, introduce variable A_{qr} in CFG

Intention:


 A_{qr} generates all strings that allow the PDA to go from q to r (with empty stack both at q and at r)

Simplified PDA to CFG

Start variable: A_{pq} (initial state p, accepting state q)

Example: Simplified PDA to CFG

variables:

start variable:

Example: Simplified PDA to CFG

productions:

$$A_{02} \rightarrow A_{01}A_{12}$$

$$A_{01} \to A_{01} A_{11}$$

$$A_{12} \to A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \to 0A_{11}1$$

$$A_{11} \to 1A_{11}0$$

$$A_{02} \rightarrow A_{11}$$

$$A_{00}
ightarrow arepsilon$$
, $A_{11}
ightarrow arepsilon$,

$$A_{22} \to \varepsilon$$

variables: $A_{00}, A_{11}, A_{22}, A_{01}, A_{02}, A_{12}$

start variable: A_{02}

Example: Simplified PDA to CFG

variables: $A_{00}, A_{11}, A_{22}, A_{01}, A_{02}, A_{12}$

start variable: A_{02}

$$A_{02} \rightarrow A_{01}A_{12}$$

$$A_{01} \to A_{01} A_{11}$$

$$A_{12} \rightarrow A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \to 0 A_{11} 1$$

$$A_{11} \to 1A_{11}0$$

$$A_{02} \rightarrow A_{11}$$

$$A_{00} \to \varepsilon$$
, $A_{11} \to \varepsilon$,

$$A_{22} \to \varepsilon$$