
Text Search and Closure Properties
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong

1/28

Text Search

grep program

grep -E regex file.txt

Searches for an occurrence of patterns matching a regular expression

regex language meaning
cat|12 {cat,12} union
[abc] {a,b,c} shorthand for a|b|c
[ab][12] {a1,a2,b1,b2} concatenation
(ab)* {ε,ab,abab, . . . } star
[ab]? {ε, a, b} zero or one
(cat)+ {cat,catcat, . . . } one or more
[ab]{2} {aa,ab,ba,bb} n copies

2/28

Searching with grep

Words containing
savor or savour

cd /usr/share/dict/
grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

Words with 5 consecutive a or b
grep -E '[abAB]{5}' words

Babbage

3/28

Searching with grep

Words containing
savor or savour

cd /usr/share/dict/
grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

Words with 5 consecutive a or b
grep -E '[abAB]{5}' words

Babbage

3/28

More grep commands

. any symbol
[a-d] anything in a range
^ beginning of line
$ end of line

grep -E '^a.pl.$' words

4/28

How do you look for

Words that start in go and have another go

grep -E '^go.*go' words

Words with at least ten vowels?

grep -iE '([aeiouy].*){10}' words

Words without any vowels?

grep -iE '^[^aeiouy]*$' words

[^R] means “does not contain”

Words with exactly ten vowels?

grep -iE '^[^aeiouy]*([aeiouy][^aeiouy]*){10}$' words

5/28

How grep (could) work

regular
expression NFA DFA

text file

input

differences in class in grep
[ab]?, a+, (cat){3} not allowed allowed
input handling matches whole looks for substring
output accept/reject finds substring

Regular expression also supported in modern languages (C, Java,
Python, etc)

6/28

Implementation of grep

How do you handle expressions like

[ab]? → ()|[ab] zero or more R? → ε|R

(cat)+ → (cat)(cat)* one or more R+ → RR∗

a{3} → aaa n copies R{n} → RR . . .R︸ ︷︷ ︸
n times

[^aeiouy] ? not containing

7/28

Closure properties

Example

The language L of strings that end in 101 is regular

(0+ 1)∗101

How about the language L of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in

000, 001, 010, 011, 100, 110 or 111

or has length 0, 1, or 2

So L can be described by the regular expression

(0+1)∗(000+001+010+011+100+110+111)+ε+(0+1)+(0+1)(0+1)

8/28

Example

The language L of strings that end in 101 is regular

(0+ 1)∗101

How about the language L of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in

000, 001, 010, 011, 100, 110 or 111

or has length 0, 1, or 2

So L can be described by the regular expression

(0+1)∗(000+001+010+011+100+110+111)+ε+(0+1)+(0+1)(0+1)

8/28

Complement

The complement L of a language L contains those strings that are
not in L

L = {w ∈ Σ∗ | w /∈ L}

Examples (Σ = {0, 1})

L1 = lang. of all strings that end in 101
L1 = lang. of all strings that do not end in 101

= lang. of all strings that end in 000, …, 111 (but not 101)
or have length 0, 1, or 2

L2 = lang. of 1∗ = {ε, 1, 11, 111, . . . }
L2 = lang. of all strings that contain at least one 0

= lang. of the regular expression (0+ 1)∗0(0+ 1)∗
9/28

Example

The language L of strings that contain 101 is regular

(0+ 1)∗101(0+ 1)∗

How about the language L of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

10/28

Closure under complement

If L is a regular language, so is L

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression NFA DFA

The DFA definition will be the most convenient here

We assume L has a DFA, and show L also has a DFA

11/28

Arguing closure under complement

Suppose L is regular, then it has a DFA M

accepts L

Now consider the DFA M ′ with the accepting and rejecting states of
M reversed

accepts strings not in L

12/28

Can we do the same with an NFA?

q0 q1 q2
1 0

0, 1

(0+ 1)∗10

q0 q1 q2
1 0

0, 1

(0+ 1)∗

Not the complement!

13/28

Can we do the same with an NFA?

q0 q1 q2
1 0

0, 1

(0+ 1)∗10

q0 q1 q2
1 0

0, 1

(0+ 1)∗

Not the complement!

13/28

Intersection

The intersection L ∩ L′ is the set of strings that are in both L and L′

Examples:

L L′ L ∩ L′

(0+ 1)∗11 1∗ 1∗11

L L′ L ∩ L′

(0+ 1)∗10 1∗ ∅

If L and L′ are regular, is L ∩ L′ also regular?

14/28

Closure under intersection

If L and L′ are regular languages, so is L ∩ L′

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression NFA DFA

Suppose L and L′ have DFAs, call them M and M ′

Goal: construct a DFA (or NFA) for L ∩ L′

15/28

Example

M ′

L′ (odd number of 1s)

s0 s1

0

1

0

1

M
L (even number of 0s)

r0

r1

1

0

1

0

r0, s0 r0, s1

r1, s0 r1, s1

1

1

00 00

1

1

L ∩ L′ = lang. of even number of 0s and odd number of 1s
16/28

Example

M ′

L′ (odd number of 1s)

s0 s1

0

1

0

1

M
L (even number of 0s)

r0

r1

1

0

1

0

r0, s0 r0, s1

r1, s0 r1, s1

1

1

00 00

1

1

L ∩ L′ = lang. of even number of 0s and odd number of 1s
16/28

Closure under intersection

M and M ′ DFA for L ∩ L′

states Q = {r1, . . . , rn}
Q′ = {s1, . . . , sm}

Q × Q′ = {(r1, s1), (r1, s2),

. . . , (r2, s1), . . . , (rn, sm)}

start states ri for M
sj for M ′

(ri, sj)

accepting
states

F for M
F ′ for M ′

F × F ′ =

{(ri, sj) | ri ∈ F , sj ∈ F ′}

Whenever M is in state ri and M ′ is in state sj , the DFA for L ∩ L′ will
be in state (ri, sj)

17/28

Closure under intersection

M and M ′ DFA for L ∩ L′

transitions ri rj
a

sk s`a

ri, sk rj, s`a

18/28

Reversal

The reversal wR of a string w is w written backwards

w = dog wR = god

The reversal LR of a language L is the language obtained by
reversing all its strings

L = {dog,war, level} LR = {god, raw, level}

19/28

Reversal of regular languages

L = language of all strings that end in 01

L is regular and has regex

(0+ 1)∗01

How about LR?

This is the language of all strings beginning in 10

It is regular and represented by

10(0+ 1)∗

20/28

Closure under reversal

If L is a regular language, so is LR

How do we argue?

regular
expression NFA DFA

21/28

Arguing closure under reversal

Take any regular language L

Will show that LR is union/concatenation/star of “atomic” regular
languages

A regular language can be of the following types:

• ∅ and {ε}
• alphabet symbols e.g. {0}, {1}
• union, concatenation, or star of simpler regular languages

22/28

Inductive proof of closure under reversal

Regular language L reversal LR

∅ ∅

{ε} {ε}

{x} (x ∈ Σ) {x}

L1 ∪ L2 LR
1 ∪ LR

2

L1L2 LR
2 LR

1

L∗
1 (LR

1)
∗

23/28

Duplication?

LDUP = {ww | w ∈ L}
Example:
L = {cat,dog}
LDUP = {catcat,dogdog}

If L is regular, is LDUP also regular?

24/28

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a,b}
LDUP = {aa,bb}
LL = {aa, ab,ba,bb}

Let’s try NFA

q0 NFA for L NFA for L q1
ε ε ε

25/28

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a,b}
LDUP = {aa,bb}
LL = {aa, ab,ba,bb}

Let’s try NFA

q0 NFA for L NFA for L q1
ε ε ε

25/28

An example

L = language of 0∗1 (L is regular)
L = {1, 01, 001, 0001, . . . }

LDUP = {11, 0101, 001001, 00010001, . . . }
= {0n10n1 | n > 0}

Let’s design an NFA for LDUP

26/28

An example

LDUP = {11, 0101, 001001, 00010001, . . . }
= {0n10n1 | n > 0}

1

1

1

01

1

001

1

0001

0 0 0 0 …

Seems to require infinitely many states!

Next lecture: will show that languages like LDUP are not regular

27/28

An example

LDUP = {11, 0101, 001001, 00010001, . . . }
= {0n10n1 | n > 0}

1

1

1

01

1

001

1

0001

0 0 0 0 …

Seems to require infinitely many states!

Next lecture: will show that languages like LDUP are not regular

27/28

Backreferences in grep

Advanced feature in grep and other “regular expression” libraries

grep -E '^(.*)\1$' words

the special expression \1 refers to the substring specified by (.*)

(.*)\1 looks for a repeated substring, e.g. mama

^(.*)\1$ accepts the language LDUP

Standard “regular expression” libraries can accept irregular
languages (as defined in this course)!

28/28

	Text Search
	Closure properties

