
CSCI5160 Approximation Algorithms Spring 2017
Lecturer: Siu On Chan Scribe: Zhi Zhen Ye

Notes 2: Ellipsoid Algorithm

This set of lecture notes follow [1].

1. Linear programs as satisfiability problems

Recall that a linear program (LP) takes the form

v∗ = max cTx

Ax 6 b

x > 0

where x, c ∈ Rn, b ∈ Rm and A ∈ Rm×n is a m-by-n matrix. Here x represents our LP variables,
c represents our linear objective function, and Ax 6 b are the linear constraints which means
that (Ax)i 6 bi,∀i ∈ {1, 2, . . . , n}. The last inequality constraint x > 0 means that x has to be
entry-wise nonnegative. Let

F
def
= {x ∈ Rn | Ax 6 b and x > 0}

be the feasible region, which is the set only containing all x satisfying all constraints. We are
interested in finding a maximizer x∗ ∈ F where cTx∗ > cTx, ∀x ∈ F .

Note that we can perform a reduction from this optimization problem to a satisfiability problem.
The way we do this is by doing a binary search for objective value. If we know that v∗ ∈ [low, up],
then we can do the binary search by adding constraint cTx > t and see if F ∩ {x ∈ Rn | cTx > t}
is non-empty. If so, we know v∗ ∈ [t, up]. Otherwise, v∗ ∈ [low, t). And we can keep doing this

iteratively. The number of times we incur the satisfiability solver is is O(log2(
up−low

ε )), where ε is
the precision required.

Algorithm 1: Linear Programs Solver

1 function solve (A, b, c, low, up, ε)
Input : A, b, c :=Parameter of LP

low := lower bound
up := upper bound
ε := required precision, e.g. 10−4

Output: near-optimal solution x∗ and near-optimal value v∗

2 F := {x ∈ Rn | Ax 6 b and x > 0}
3 closest sol := 0

// Already within precision

4 if up− low > ε then
// Assume feasible returns a bool representing feasibility and a feasible

solution

5 is feasible, x := feasible(F ∩ {x ∈ Rn | cTx > low})
6 return x, cTx

7 while up− low > ε do

8 med := low+up
2

9 is feasible, x := feasible(F ∩ {x ∈ Rn | cTx > med})
10 if is feasible then
11 low ← cTx

12 closest sol← x

13 else
14 up← med

15 end

16 end

17 return closest sol, low

1



2

Before we proceed, let’s introduce the task of checking for feasibility, and a related task of
checking whether the constraints can be robustly satisfied.

Problem 1.1 (Feasibility). Given a set of constraints C, consider the feasible set F
def
= {x ∈

Rn | x satisfies all constraints in C}. If F 6= ∅, then return any x ∈ F . Otherwise, output “F is
infeasible”.

Problem 1.2 (Robust feasibility). Given a set of constraints C and a length parameter r ∈ R+,

consider the feasible set F
def
= {x ∈ Rn | x satisfies C}. If F contains any cube of length r, return

any x ∈ F . Otherwise, output “F is infeasible”.

We claim (without giving any details) that to approximately solve a linear program, it suffices
to solve robust feasibility.

2. Ellipsoid Algorithm

Algorithm 2: Ellipsoid Algorithm

1 function feasible (C)
Input : C :=The set of constraints
Output: A feasible solution x satisfying all constraints in C

2 F := {x ∈ Rn | x satisfies all constraints in C}
3 E := initialize as a ball of radius R, s.t. F ⊆ E
4 repeat
5 c← center of E

6 if c ∈ F then return c

7 else Find a hyperplane to separate c from F . Let H be the corresponding halfspace s.t.

F ⊆ H
8 E ← smallest ellipsoid containing E ∩H
9 until E is too small

10 return “Infeasible”

Remark 2.1.

(1) In Line 8, since F ⊆ E and F ⊆ H, we know F ⊆ E ∩H. So the iterative process is clear.
(2) In terms of solving efficency, we have following claim (without proof):

Claim 2.2. Vol(new ellipsoid) 6 (1− 1
n3 ) Vol(original ellipsoid), where n is the dimension

of ~x, the variables.

Therefore the ellipsoid E in the algorithm shrinks exponentially. Assume that the
separating oracle (a black-box subroutine for finding separating hyperplane) is efficient
(polynomial-time in terms of problem size). Checking whether constraints are satisfied or
not in LP is also efficient. (Here we gloss over details about finding the smallest ellipsoid
containing the intersection.) Therefore LP is (approximately) solvable in polynomial time.

(3) For LP, a separating hyperplane may be given by a violating constraint, that is a row Ai
of A where ATi c > bi (and this must exist). Such a row can be found in polynomial time.

(4) For SDP, the variable is a matrix. If X < 0 does not hold, then it has a negative eigenvalue.
The associated eigenvector defines a separating hyperplane in this case.

References

[1] Ryan O’Donnell. Lecture 15, a theorist’s toolkit. 2013.



3

Figure 1. Ellipsoid in a single iteration


	1. Linear programs as satisfiability problems
	2. Ellipsoid Algorithm
	References

