
1/19

Cook–Levin Theorem
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017



2/19

NP-completeness

NP-complete

P

NP

•PATH
•L01

•

•

•SAT •IS

•CLIQUE Theorem (Cook–Levin)
Every language in NP

polynomial-time reduces to SAT



3/19

Cook–Levin theorem

EveryL ∈ NP polynomial-time reduces to SAT

Need to find a polynomial-time reductionR such that

L SAT

z R Boolean formulaϕ

z ∈ L ←→ ϕ is satisfiable



4/19

NP-completeness of SAT

All we know: L has a polynomial-time verifierV

V 0110#10

z s

z ∈ L if and only if
V accepts 〈z, s〉 for some s

Tableau of computation history ofV

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …

T

S



5/19

Tableau of computation history

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …

T

S

u

n = length of z

height of tableau isO(nc) for some
constant c

width of tableau isO(nc)

k possible tableau symbols

xT ,S,u =

{
True if cell (T ,S) contains symbol u
False otherwise



6/19

Reduction to SAT

L SAT

z R Boolean formulaϕ

z ∈ L ←→ ϕ is satisfiable

Will design a formulaϕ such that

variables ofϕ xT ,S,u
assignment to xT ,S,u ≈ assignment to tableau symbols
satisfying assignment ↔ accepting computation history
ϕ is satisfiable ↔ V accepts 〈z, s〉 for some s



7/19

Reduction to SAT

Will construct inO(n2c) time a formulaϕ such that
ϕ(x) is True precisely when the assignment to {xT ,S,u} represents legal

and accepting computation history

ϕ = ϕcell ∧ ϕinit ∧ ϕmove ∧ ϕacc

ϕcell : Exactly one symbol in each cell
ϕinit : First row is q0z#s for some s
ϕmove :Moves between adjacent rows
follow the transitions ofV
ϕacc : Last row contains qacc

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …



8/19

ϕcell : exactly one symbol per cell

ϕcell = ϕcell,1,1 ∧ · · · ∧ ϕcell,#rows,#cols where

ϕcell,T ,S = (xT ,S,1 ∨ · · · ∨ xT ,S,k) at least one symbol

∧(xT ,S,1 ∧ xT ,S,2)

∧(xT ,S,1 ∧ xT ,S,3)
...

∧(xT ,S,k−1 ∧ xT ,S,k)

 no two symbols in one cell



9/19

ϕinit andϕacc

First row is q0z#s for some s

ϕinit = x1,1,q0 ∧ x1,2,z1 ∧ · · · ∧ x1,n+1,zn ∧ x1,n+2,#

Last row contains qacc somewhere

ϕacc = x#rows,1,qacc ∧ · · · ∧ x#rows,#cols,qacc



10/19

Legal and illegal transitions windows

legal windows illegal windows
…
…

abx
abx

…
…

…
…

q3ab
abq3

…
…

…
…

aq3a
q6ax

…
… q3

q6
a/xL

…
…

q3q3a
q3q3x

…
…

…
…

aba
abq6

…
…

…
…

aq3a
q6ab

…
…

…
…

aa�
xa�

…
…

…
…

aq3a
aq6x

…
…



11/19

ϕmove : moves between rows follow transitions ofV

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

a1a2a3
b1 b2 b3

1qacc 0 …

ϕmove = ϕmove,1,1 ∧ · · · ∧ ϕmove,#rows−1,#cols−2

ϕmove,T ,S =
∨

legal
a1a2a3
b1b2b3

(
xT ,S,a1 ∧ xT ,S+1,a2 ∧ xT ,S+2,a3∧

xT+1,S,b1 ∧ xT+1,S+1,b2 ∧ xT+1,S+2,b3

)



12/19

NP-completeness of SAT

z R Boolean formulaϕ

z ∈ L ←→ ϕ is satisfiable

LetV be a polynomial-time verifier forL

R = On input z ,
1. Construct the formulasϕcell, ϕinit, ϕmove, ϕacc

2. Outputϕ = ϕcell ∧ ϕinit ∧ ϕmove ∧ ϕacc

R takes timeO(n2c)
V accepts 〈z, s〉 for some s if and only ifϕ is satisfiable



13/19

NP-completeness: More examples



14/19

Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

TRICOVER = {〈G, k〉 | G has a k-cover for triangles}

TRICOVER is NP-complete



15/19

Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like {D, F}

V = On input 〈G, k,S〉, where S is a set of k vertices

1. For every triple (u, v,w) of vertices:
If (u, v), (v,w), (w, u) are all edges inG:

If none of u, v,w are in S , reject

2. Otherwise, accept

Running time =O(n3)

A B

C

E G

D

F



16/19

Step 2: Some NP-hard problem reduces to TRICOVER

VC = {〈G, k〉 | G has a vertex cover of size k}
Some vertex in every edge is covered

TRICOVER = {〈G, k〉 | G has a k-cover for triangles}
Some vertex in every triangle is covered

Idea: replace edges by triangles

R−→

vertex cover inG cover for triangles inG′



17/19

VC polynomial-time reduces to TRICOVER

R = On input 〈G, k〉, where graphG has n vertices andm edges,

1. Construct the following graphG′:
G′ has n + m vertices:

v1, . . . , vn are vertices fromG
introduce a new vertex uij for every edge (vi , vj) ofG

For every edge (vi , vj) ofG:
include edges (vi , vj), (vi , uij), (uij , vj) inG′

2. Output 〈G′, k〉

Running time isO(n + m)



18/19

Step 3: Argue correctness (forward)

〈G, k〉 ∈ VC ⇒ 〈G′, k〉 ∈ TRICOVER

⇒

G has a k-vertex cover S G′ has a k-triangle cover S
old triangles fromG are covered
new triangles inG′ also covered



19/19

Step 3: Argue correctness (backward)

〈G, k〉 ∈ VC ⇐ 〈G′, k〉 ∈ TRICOVER

⇐

G has a k-vertex cover S ′ G′ has a k-triangle cover S

S ′ is obtained after moving
some vertices of S

Some vertices in S may not
come fromG!

Since S ′ covers all triangles in
G′, it covers all edges inG

But we can move them and still
cover the same triangle


