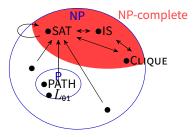
Cook–Levin Theorem CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

NP-completeness



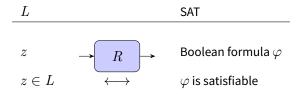
Theorem (Cook-Levin)

Every language in NP polynomial-time reduces to SAT

Cook-Levin theorem

Every $L \in \mathsf{NP}$ polynomial-time reduces to SAT

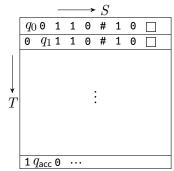
Need to find a polynomial-time reduction \boldsymbol{R} such that

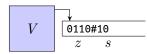


NP-completeness of SAT

All we know: L has a polynomial-time verifier V

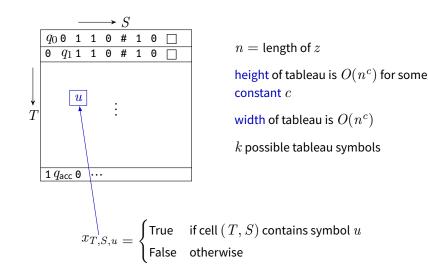
Tableau of computation history of V



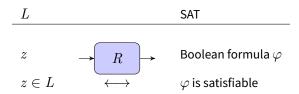


 $z \in L \text{ if and only if} \\ V \text{ accepts } \langle z,s \rangle \text{ for some } s$

Tableau of computation history



Reduction to SAT



Will design a formula φ such that

 \approx

variables of φ assignment to $x_{T,S,u}$ satisfying assignment φ is satisfiable

 $x_{T,S,u}$

- assignment to tableau symbols
- \leftrightarrow accepting computation history
- $\leftrightarrow \quad V \operatorname{accepts} \langle z, s \rangle \text{ for some } s$

Reduction to SAT

Will construct in $O(n^{2c})$ time a formula φ such that $\varphi(x)$ is True precisely when the assignment to $\{x_{T,S,u}\}$ represents legal and accepting computation history

 $\varphi = \varphi_{\mathrm{cell}} \wedge \varphi_{\mathrm{init}} \wedge \varphi_{\mathrm{move}} \wedge \varphi_{\mathrm{acc}}$

 φ_{cell} : Exactly one symbol in each cell φ_{init} : First row is $q_0 z \# s$ for some s φ_{move} : Moves between adjacent rows follow the transitions of V φ_{acc} : Last row contains q_{acc}

q_0	0	1	1	0	#	1	0	
0	q_1	1	1	0	#	1	0	
					•			
	~							
19	laco	:0	•••					

φ_{cell} : exactly one symbol per cell

$$\varphi_{\text{cell}} = \varphi_{\text{cell},1,1} \wedge \cdots \wedge \varphi_{\text{cell},\#\text{rows},\#\text{cols}}$$
 where

$$\left. \begin{array}{l} \varphi_{\mathsf{cell},T,S} = (x_{T,S,1} \lor \cdots \lor x_{T,S,k}) & \text{ at least one symbol} \\ & \wedge \overline{(x_{T,S,1} \land x_{T,S,2})} \\ & \wedge \overline{(x_{T,S,1} \land x_{T,S,3})} \\ & \vdots \\ & \wedge \overline{(x_{T,S,k-1} \land x_{T,S,k})} \end{array} \right\} & \text{ no two symbols in one cell}$$

$\varphi_{\mathrm{init}} \operatorname{and} \varphi_{\mathrm{acc}}$

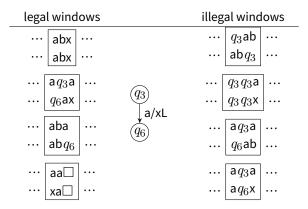
First row is $q_0 z \# s$ for some s

 $\varphi_{\mathsf{init}} = x_{1,1,q_0} \land x_{1,2,z_1} \land \dots \land x_{1,n+1,z_n} \land x_{1,n+2,\#}$

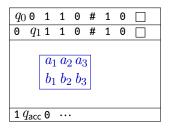
Last row contains $q_{\rm acc}$ somewhere

$$\varphi_{\mathsf{acc}} = x_{\mathsf{\#rows},1,q_{\mathsf{acc}}} \wedge \dots \wedge x_{\mathsf{\#rows},\mathsf{\#cols},q_{\mathsf{acc}}}$$

Legal and illegal transitions windows



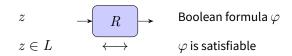
$\varphi_{\rm move}$: moves between rows follow transitions of V



$$\varphi_{\mathsf{move}} = \varphi_{\mathsf{move},1,1} \wedge \dots \wedge \varphi_{\mathsf{move},\mathsf{\#rows}-1,\mathsf{\#cols}-2}$$

$$\varphi_{\text{move},T,S} = \bigvee_{\substack{\text{legal} \begin{bmatrix} a_1 a_2 a_3 \\ b_1 b_2 b_3 \end{bmatrix}}} \begin{pmatrix} x_{T,S,a_1} \land x_{T,S+1,a_2} \land x_{T,S+2,a_3} \land \\ x_{T+1,S,b_1} \land x_{T+1,S+1,b_2} \land x_{T+1,S+2,b_3} \end{pmatrix}$$

NP-completeness of SAT



Let $\,V\,{\rm be}\,{\rm a}\,{\rm polynomial-time}\,{\rm verifier}\,{\rm for}\,L$

R =On input z,

- 1. Construct the formulas $\varphi_{\text{cell}}, \varphi_{\text{init}}, \varphi_{\text{move}}, \varphi_{\text{acc}}$
- 2. Output $\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}$

 $R \text{ takes time } O(n^{2c})$ $V \text{ accepts } \langle z,s\rangle \text{ for some } s \text{ if and only if } \varphi \text{ is satisfiable}$

NP-completeness: More examples

Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles? Yes

Has 1-cover for triangles? No, it has two vertex-disjoint triangles

 $\mathsf{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k \text{-cover for triangles} \}$

TRICOVER is NP-complete

Step 1: TRICOVER is in NP

What is a solution for TRICOVER? A subset of vertices like {D, F}

 $V = \operatorname{On}\operatorname{input}{\langle G, k, S \rangle}$, where S is a set of k vertices

- 1. For every triple (u, v, w) of vertices: If (u, v), (v, w), (w, u) are all edges in G: If none of u, v, w are in S, reject
- 2. Otherwise, accept

Running time = $O(n^3)$

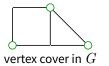
Step 2: Some NP-hard problem reduces to TRICOVER

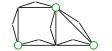
 $VC = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}$ Some vertex in every edge is covered

 $\mathsf{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k \text{-cover for triangles} \}$ Some vertex in every triangle is covered

Idea: replace edges by triangles

 R_{i}





cover for triangles in G'

VC polynomial-time reduces to TRICOVER

R= On input $\langle G,k\rangle$, where graph G has n vertices and m edges,

1. Construct the following graph G':

G' has n + m vertices:

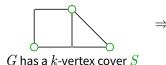
 v_1, \ldots, v_n are vertices from Gintroduce a new vertex u_{ij} for every edge (v_i, v_j) of GFor every edge (v_i, v_j) of G: include edges $(v_i, v_j), (v_i, u_{ii}), (u_{ii}, v_j)$ in G'

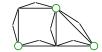
2. Output $\langle G',k \rangle$

Running time is O(n+m)

Step 3: Argue correctness (forward)

$\langle G, k \rangle \in \mathsf{VC} \quad \Rightarrow \quad \langle G', k \rangle \in \mathsf{TRICOVER}$



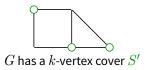


G' has a k-triangle cover S old triangles from G are covered new triangles in G' also covered

Step 3: Argue correctness (backward)

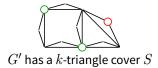
 $\langle G, k \rangle \in \mathsf{VC} \quad \Leftarrow \quad \langle G', k \rangle \in \mathsf{TRICOVER}$

 \Leftarrow



 $S^\prime\,$ is obtained after moving some vertices of $S\,$

Since S' covers all triangles in G', it covers all edges in G



Some vertices in ${\cal S}$ may not come from ${\cal G}!$

But we can move them and still cover the same triangle