LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

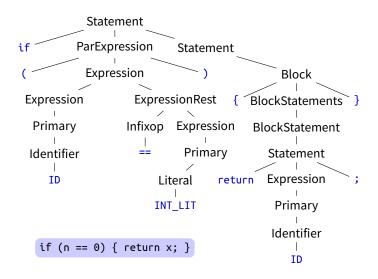
Fall 2017

Parsing computer programs

First phase of javac compiler: lexical analysis

The alphabet of Java CFG consists of tokens like $\Sigma = \big\{ \texttt{if}, \texttt{return}, (,), \{,\}, \texttt{;}, \texttt{==}, \texttt{ID}, \texttt{INT_LIT}, \dots \big\}$

Parsing computer programs



Parse tree of a Java statement

CFG of the java programming language

```
Identifier:
    IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral
Literal:
    IntegerLiteral
    FloatingPointLiteral
    BooleanLiteral
    CharacterLiteral
    StringLiteral
    NullLiteral
Expression:
    LambdaExpression
    AssignmentExpression
AssignmentOperator:
    (one of) = *= /= %= += -= <<= >>= &= ^= |=
                                from http:
 //java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996
```

Parsing Java programs

```
class Point2d {
    /* The X and Y coordinates of the point--instance variables */
    private double x:
    private double y;
    private boolean debug: // A trick to help with debugging
    public Point2d (double px, double py) { // Constructor
       x = px:
       v = pv:
       debug = false; // turn off debugging
    public Point2d () { // Default constructor
        this (0.0, 0.0):
                                           // Invokes 2 parameter Point2D constructor
    // Note that a this() invocation must be the BEGINNING of
    // statement body of constructor
    public Point2d (Point2d pt) {
                                  // Another consructor
       x = pt.getX();
       v = pt.qetY():
```

Simple Java program: about 1000 tokens

Parsing algorithms

How long would it take to parse this program?

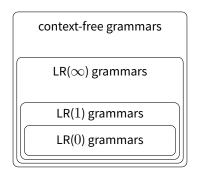
try all parse trees	$\geqslant 10^{80}$ years
CYK algorithm	hours

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!

Hierarchy of context-free grammars



Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it

LR(0) parser: overview

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

input: ()()

1 •()()	2 (•)()	3 ()•()
4 A•() /\ ()	5 S•()	6 S(•) A / \ ()
7 S()• A /\	8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

LR(0) parser: overview

$$S o SA \mid A$$
 input: ()() $A o (S) \mid$ ()

Features of LR(0) parser:

- Greedily reduce the recently completed rule into a variable
- Unique choice of reduction at any time

9/3

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P

In fact, the PDA will be a simple modification of an NFA ${\cal N}$

The NFA accepts if a rule $B \to \beta$ has just been completed and the PDA will reduce β to B

$$\dots \Rightarrow \mathbf{2} \ (\bullet)() \ \Rightarrow \mathbf{3} \ () \bullet () \ \stackrel{\checkmark}{\Rightarrow} \mathbf{4} \quad A \bullet () \ \stackrel{\checkmark}{\Rightarrow} \mathbf{5} \quad S \bullet () \ \Rightarrow \dots$$

$$(\ \) \quad \qquad A$$

$$(\ \)$$

 \checkmark : NFA N accepts

10/3

NFA acceptance condition

$$S o SA \mid A$$
 $A o (S) \mid$ ()

A rule $B \to \beta$ has just been completed if

Case 1 input/buffer so far is exactly β

- Examples: 3 ()•() and 4 A•()

Case 2 Or buffer so far is $\alpha\beta$ and there is another rule $C \to \alpha B\gamma$

- Example: $7 S() \bullet$

This case can be chained

Designing NFA for Case 1

$$S \rightarrow SA \mid A$$

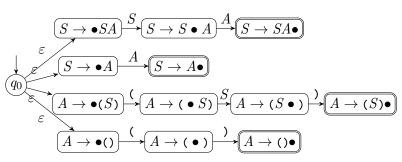
 $A \rightarrow (S) \mid ()$

Design an NFA N' to accept the right hand side of some rule $B\to\beta$

Designing NFA for Case 1

$$S o SA \mid A$$
 $A o (S) \mid$ ()

Design an NFA N' to accept the right hand side of some rule $B\to\beta$



Designing NFA for Cases 1 & 2

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

Design an NFA N to accept $\alpha\beta$ for some rules $C\to \alpha B\gamma,\quad B\to \beta$ and for longer chains

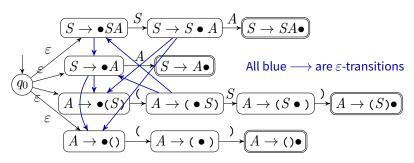
Designing NFA for Cases 1 & 2

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

Design an NFA N to accept $\alpha\beta$ for some rules $C\to \alpha B\gamma,\quad B\to \beta$ and for longer chains

For every rule $C o \alpha B \gamma$, $B o \beta$, add $C o \alpha \bullet B \gamma$ $\xrightarrow{\mathcal{E}} B o \bullet \beta$



Summary of the NFA

For every rule
$$B \to \beta$$
, add $\longrightarrow (q_0) \xrightarrow{\varepsilon} B \to \bullet \beta$

For every rule $B o \alpha X \beta$ (X may be terminal or variable), add

$$B \to \alpha \bullet X\beta \xrightarrow{X} B \to \alpha X \bullet \beta$$

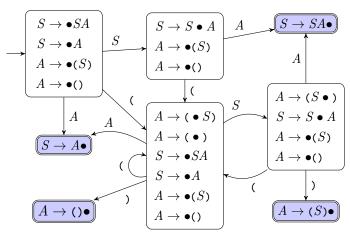
Every completed rule $B \to \beta$ is accepting $B \to \beta$

For every rule
$$C \to \alpha B \gamma$$
, $B \to \beta$, add
$$C \to \alpha \bullet B \gamma \xrightarrow{\mathcal{E}} B \to \bullet \beta$$

The NFA N will accept whenever a rule has just been completed

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity



Observation: every accepting state contains only one rule: a completed rule $B \to \beta \bullet$, and such rules appear only in accepting states

LR(0) grammars

A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state contains only one rule: a completed rule of the form $B \to \beta ullet$ and completed rules appear only in accepting states

Shift state:

no completed rule

$$\left(\begin{array}{c}
S \to S \bullet A \\
A \to \bullet(S) \\
A \to \bullet()
\end{array}\right)$$

$$A \to \bullet(S)$$

$$A \to ullet()$$

Reduce state:

has (unique) completed rule

$$A \to (S) \bullet$$

Simulating DFA ${\cal D}$

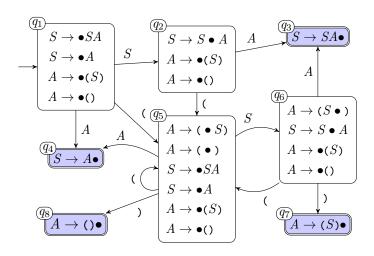
Our parser P simulates state transitions in DFA D

$$(()\bullet) \qquad \Rightarrow \qquad (A\bullet)$$

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack go back to the correct state by looking at the stack

Let's label *D*'s states



$\mathsf{LR}(0)$ parser: a "PDA" P simulating DFA D

P's stack contains labels of D's states to remember progress of partially completed rules

At D's non-accepting state q_i

- 1. P simulates D's transition upon reading terminal or variable X
- 2. P pushes current state label q_i onto its stack

At D's accepting state with completed rule $B o X_1 \dots X_k$

1. P pops k labels q_k, \ldots, q_1 from its stack

2. constructs part of the parse tree $X_1 \quad X_2 \quad \cdots \quad X_k$

3. P goes to state q_1 (last label popped earlier), pretend next input symbol is B

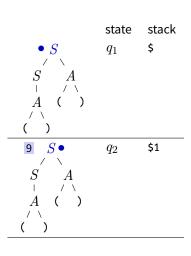
Example

	state	stack
1 •()()	q_1	\$
2 (•)()	q_5	\$1
3 ()•()	q_8	\$15
• <i>A</i> ()	q_1	\$
()		
4 A •()	q_4	\$1
()		
• S()	q_1	\$
$\overset{\vdash}{A}$		
/ \		
()		

	state	stack
5 S•()	q_2	\$1
<i>A</i> ()		
6 S(•) A ()	q_5	\$12

Example

	state	stack
7 S()•	q_8	\$125
A /\ (_)		
$S \bullet A$	q_2	\$1
A ()		
8 S A•	q_3	\$12
$\stackrel{\perp}{A}$ ()		
/\		
()		



parser's output is the parse tree

Another LR(0) grammar

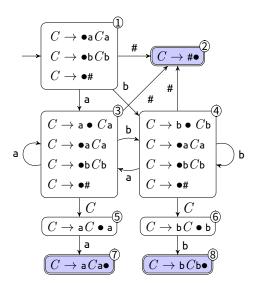
$$L = \{w\#w^R \mid w \in \{\mathtt{a},\mathtt{b}\}^*\} \qquad C \to \mathtt{a} C \mathtt{a} \mid \mathtt{b} C \mathtt{b} \mid \#$$

$$\mathsf{NFA} \, N \colon$$

$$\mathsf{a} \qquad C \to \mathtt{a} C \mathtt{a} \qquad C \to \mathtt{a} C \mathtt{a} \qquad C \to \mathtt{a} C \mathtt{a} \qquad C \to \mathtt{a} C \mathtt{a}$$

Another LR(0) grammar

$$C
ightarrow$$
 a C a \mid b C b \mid #



input: ba#ab

stack	state	action
\$	1	S
\$1	4	S
\$14	3	S
\$14 <u>3</u>	2	R
\$143	5	S
\$1 <u>435</u>	7	R
\$14	6	S
\$ <u>146</u>	8	R

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as $L = \{ww^R \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$

What goes wrong when we do LR(0) parsing on L?

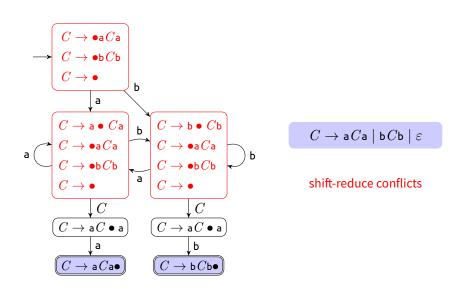
Example 2

$$L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^*\} \qquad C \to \mathtt{a} C \mathtt{a} \mid \mathtt{b} C \mathtt{b} \mid \varepsilon$$

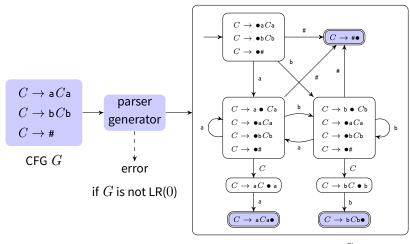
$$\qquad \mathsf{NFA} \, N \colon$$

$$\mathsf{a} \qquad \qquad \mathsf{C} \to \mathtt{a} C \mathtt{a} \qquad \mathsf{C} \to \mathtt{a} C \mathtt{a} \qquad \mathsf{C} \to \mathtt{a} C \mathtt{a} \mathsf{C}$$

Example 2



Parser generator



"PDA" for parsing G

Motivation: Fast parsing for programming languages

LR(1) Grammar: A few words

LR(0) grammar revisited

LR(1) grammars

LR(0) grammars

 $\mathsf{LR}(0) \ \mathsf{parser} \colon \mathbf{Left\text{-}to\text{-}right\ read}, \mathbf{R} \mathsf{ightmost\ derivation}, \mathbf{0} \ \mathsf{lookahead\ symbol}$

$$S \to SA \mid A$$

$$A \rightarrow (S) \mid ()$$

Derivation

$$S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow ()()$$

Reduction (derivation in reverse)

()()
$$\rightarrowtail$$
 A () \rightarrowtail S () \rightarrowtail SA \rightarrowtail S

LR(0) parser looks for rightmost derivation Rightmost derivation = Leftmost reduction

Parsing computer programs

Parsing computer programs

```
if (n == 0) { return x; }
      else { return x + 1; }
                 Statement
 ParExpression
                 Statement
                                  else
                                              Statement
  Expression
CFGs of most programming languages are not LR(0)
          LR(0) parser cannot tell apart
       if ...then from if ...then ...else
```

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

$$\begin{array}{c|c} \text{States in NFA } N \\ \text{LR}(0) \colon & \text{LR}(1) \colon \\ A \to \alpha \bullet \beta & \left[A \to \alpha \bullet \beta, a\right] \end{array}$$

$$\begin{array}{c|c} \text{States in DFA } D \\ \text{LR}(0) \colon & \text{LR}(1) \colon \\ \text{no shift-reduce conflicts} & \text{some shift-reduce conflicts allowed} \\ \text{some reduce-reduce conflicts allowed} & \text{as long as can be resolved with} \end{array}$$

lookahead symbol a

We won't cover LR(1) parser in this class; take CSCI 3180 for details