LR(0) Parsers
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

Parsing computer programs

if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

4l

INT_LIT

return

=]:]D]

The alphabet of Java CFG consists of tokens like
Y = {if,return, (,),{,},;,==, ID, INT_LIT,... }

Parsing computer programs

Statement
if ParExpression Statement
| \
(— Expression T) Block
— ~ \
Expression ExpressionRest { “BlockStatements ™ }
[/s AN \
Primary Infixop Expression BlockStatement
| \ w \
Identifier == Primary Statement
\ / |
ID Literal return Expression ;
\ [
INT_LIT Primary
\
Identifier
if (n == 0) { return x; } \
ID

Parse tree of a Java statement

CFG of the java programming language

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral
Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral
Expression:
LambdaExpression
AssignmentExpression
AssignmentOperator:
(one of) = *= [= %= 4= -= <<= >>= >>>= &= A= |=

from http:
//java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

Parsing Java programs

class Point2d {
/* The X and Y coordinates of the point--instance variables */
private double x;
private double y;
private boolean debug; // A trick to help with debugging

public Point2d (double px, double py) { // Constructor
X = px;
y = py;

debug = false; // turn off debugging

public Point2d () { // Default constructor
this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
}
// Note that a this() invocation must be the BEGINNING of
/] statement body of constructor

public Point2d (Point2d pt) { // Another consructor

x = pt.getX();
y = pt.gety();

Simple Java program: about 1000 tokens

Parsing algorithms

How long would it take to parse this program?

try all parse trees > 10% years
CYK algorithm hours

Can we parse faster?
CYK s the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!

Hierarchy of context-free grammars

context-free grammars

LR(oc0) grammars

LR(1) grammars

E LR(0) grammars]

- 7)

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it

LR(0) parser: overview

S—SA|A input: ()()
A= 10
1 00 2 ()0 3 ()00
4 Ae() | B Se(6 S(e)
/ \ | |
D) A A
/ \ /\
) ¢)
7 SO | 8 S Ae 9 e
| | /\ / N\
A AC) S A
/\ /\ I /\
)) A (

LR(0) parser: overview

S—SA|A input: ()()
A= (S| 0O

Features of LR(0) parser:
> Greedily reduce the recently completed rule into a variable

» Unique choice of reduction at any time

3 000 = 4 Ae() = 5 §e()
/A !

¢) A
/A

¢)

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P
In fact, the PDA will be a simple modification of an NFA N

The NFA accepts ifarule B — [has just been completed
and the PDA will reduce S to B

.= 2 (&)() = 3 ()e() ‘:/> 4 Ae() ‘:/> 5 Se() = ...
/\ [

¢) A
/A

(G
v: NFA N accepts

NFA acceptance condition
S—SA| A
A= (S0

Arule B — (3 has just been completed if

Case 1 input/buffer so far is exactly 5

Examples: 3 (O)e() and 4 Ae()
/A
¢)
Case 2 Or buffer so faris a8 and there is another rule C' — a B~y
Example: 7 SQe
!
A
/A
(G

This case can be chained

Designing NFA for Case 1

S—SA|A
A= S| 0

Design an NFA N’ to accept the right hand side of some rule B — 3

Designing NFA for Case 1

S—SA|A
A= S| 0

Design an NFA N’ to accept the right hand side of some rule B — 3

= oSA]—S{S —Se A]i[[s — SAe]

(55 oA 25 49)

(A= o AA = (o5} A= So) A Bre)
Ef—> O (o)A = 09)

3

Designing NFA for Cases 1 &2

Design an NFA IV to accept a3 for some rules
S — SA[A C —aBy, B—f
A= S0 and for longer chains

Designing NFA for Cases 1 &2

Design an NFA IV to accept a3 for some rules
S — SA[A C —aBy, B—f
A= S0 and for longer chains

Foreveryrule C' — aB~, B — f3,add [C —ae By]—E{B — oﬁj

= oSA]—S{S —Se A]i[[s — SAe)

[S —> oA S — Ao]] All blue — are e-transitions

[i{c S A (e H)PHA S (5 ﬂl[[A — (S)e])
(4~ -<>HA S ()45 0d)

Summary of the NFA

Foreveryrule B — (3, add

For every rule B — X3 (X may be terminal or variable), add
[B—m.x@i{B—mX.ﬁ]

Every completed rule B — [is accepting

Foreveryrule C' — aB~, B — (3, add

[C — aoB”y]—g{B — oﬂ]

The NFA N will accept whenever a rule has just been completed

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

S—>SeAdA| A S — SAe
A — o(S)
A — ()
I

S
A—(e5)
A— (o)
S — eSA
S —eA
A — o(9)

)
A o0 (4= 9]

~

Observation: every accepting state contains only one rule:
acompleted rule B — (e, and such rules appear only in accepting states

LR(0) grammars
A grammar G is LR(0) if its corresponding D satisfies:

Every accepting state contains only one rule:
a completed rule of the form B — (e
and completed rules appear only in accepting states

Shift state: Reduce state:

no completed rule has (unique) completed rule

Simulating DFA D

Our parser P simulates state transitions in DFA D

(Oe) = (Ae)
/A
¢)

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack
go back to the correct state by looking at the stack

Let’s label D’s states

S—SeA
A — o(S)
A — e()

A— (e8)
A— (e)
S — eSA
S —eA
A — o(S)

A — o)
- @@

LR(0) parser: a “PDA” P simulating DFA D

P’s stack contains labels of D’s states to remember progress of partially
completed rules

At D’s non-accepting state ¢;
1. P simulates D’s transition upon reading terminal or variable X

2. P pushes current state label g; onto its stack

At D’s accepting state with completed rule B — X ... X
1. P pops klabels g, . . ., ¢ from its stack

B
2. constructs part of the parse tree /X/ N
y -

1 Xk

3. P goesto state ¢ (last label popped earlier), pretend next input
symbolis B

Example

state stack
1 e()() a1 $
2 (9)() as $1 state stack
3 (0)e() as $15 5 Se() @ $1
A0 @ $!
/\ /A\
(G ¢)
! /A\.() " . 6 S(®) ¢ $12
))
e S0 @ $ /\
! (G
A
/ A\

Example

state stack
LIS Q1 $

state stack
7 SQe as $125
\
A
/\
«C)
S e A Q2 $1
VRN
A C)
/\
«C)
8 S Ae @3 $12
VRN
A ()
/\
«C

parser’s output is the parse tree

Another LR(0) grammar

L = {wswf | w e {a,b}*} C —aCa|bCh|#

NFA N:

—

[C —ae Ca}é[c — aCOa]E'[[C — aCaO]]

N g

Another LR(0) grammar

C —aCa|bCb|#

input: ba#ab

C — eaCa
—1 C — o (b stack state action

C — ot $ 1 S
* 1 4 S
- 4 $14 3 S
C—aelCa|ly |C—belh §143 2 R
aC C — eaCa C — eaCa b $143 5 S
C — eb(Cb C — eb(Cb $1435 7 R
C — ot C — et $14 6 S
¢ [0 e o

[C%aCOa? [C—)fCOb?
b
(G5 a0m] (T oCoe}

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as
L= {ww?®| we {a,b}*}

What goes wrong when we do LR(0) parsing on L?

Example 2

L= {ww?®| we {a,b}*} C —aCa|bChb|e

NFA N:

—

[C —ae Ca}é[c — aC’Oa]E'[[C — aCaO]]

N g

Example 2

Y

C — ea(la
— C — eb(Chb
C—e

’ N

C —ae(Ca b C —be(Chb

C —aCa|bCb|e

aC C — ea(Cla C — ea(la
C — eb(Chb C — eb(Chb
C—oe 30 shift-reduce conflicts
\C e

Parser generator

C — aCa
parser
C—bCb — generator
C—# :
CFG G ¥

error

if G is not LR(0)

)
C — eaCa

C — ebCh
C — o

a

O
C—aeCa

C — eaCa
C — ebChb

C — o

C —beCh
C — eaCa
C — ebChb

C — eo#

“PDA” for parsing G

Motivation: Fast parsing for programming languages

LR(1) Grammar: A few words

LR(0) grammar revisited

LR(1) grammars
[LR(0) grammars]

LR(0) parser: Left-to-right read, Rightmost derivation, O lookahead symbol

Derivation

S=84=S50)= A=
S SA| A O O 00
A= S| 0O Reduction (derivation in reverse)

00— AQ) — SO — SA— S

LR(0) parser looks for rightmost derivation
Rightmost derivation = Leftmost reduction

Parsing computer programs
if (n == 0) { return x; }

Statement

="

arExpression Statement

/ \ \

(Expression)

if

Parsing computer programs

if (n == 0) { return x; }

else { return x + 1; }

Statement

————

if ParExpression Statement else Statement

/ \ \

(Expression)

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart
if...then from 1if...then...else

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA V
LR(0): LR(1):

A= aef | [A— e, d
Statesin DFA D
LR(0): LR(1):
no shift-reduce conflicts some shift-reduce conflicts allowed
no reduce-reduce conflicts | some reduce-reduce conflicts allowed
as long as can be resolved with
lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details

