Pumping Lemma for Context-Free Languages CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

$$L_1 = \{a^n b^n \mid n \ge 0\}$$

$$L_2 = \{z \mid z \text{ has the same number of a's and b's}\}$$

$$L_3 = \{a^n b^n c^n \mid n \ge 0\}$$

$$L_4 = \{zz^R \mid z \in \{a, b\}^*\}$$

$$L_5 = \{zz \mid z \in \{a, b\}^*\}$$

These languages are not regular Are they context-free?

An attempt

$$L_3 = \{\mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \ge 0\}$$

Let's try to design a CFG or PDA

$S \to aBc \mid \varepsilon$	read a / push x
	read b / pop x
$B \rightarrow ???$???

Suppose we could construct some CFG G for L_3

e.g. $S \rightarrow CC \mid BC \mid a$ $B \rightarrow CS \mid b$ $C \rightarrow SB \mid c$

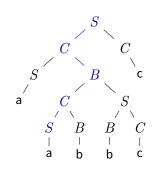
How does a long derivation look like?

- $S \Rightarrow CC$
 - $\Rightarrow SBC$
 - $\Rightarrow SCSC$
 - $\Rightarrow SSBSC$
 - $\Rightarrow SSBBCC$
 - $\Rightarrow \mathsf{a}SBBCC$
 - $\Rightarrow aaBBCC$
 - $\Rightarrow aabBCC$
 - $\Rightarrow \mathsf{aabb} CC$
 - $\Rightarrow \mathsf{aabbc} C$
 - $\Rightarrow \mathsf{aabbcc}$

Repetition in long derivations

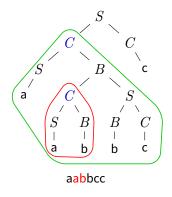
If a derivation is long enough, some variable must appear twice on the same root-to-leave path in a parse tree

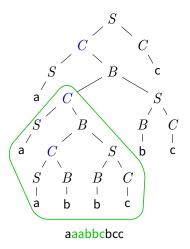
- $S \Rightarrow CC$
 - $\Rightarrow SBC$
 - $\Rightarrow SCSC$
 - $\Rightarrow SSBSC$
 - $\Rightarrow SSBBCC$
 - $\Rightarrow \mathsf{a}SBBCC$
 - \Rightarrow aaBBCC
 - $\Rightarrow \mathsf{aab}BCC$
 - $\Rightarrow \mathsf{aabb}\, CC$
 - $\Rightarrow \mathsf{aabbc} C$
 - $\Rightarrow \mathsf{aabbcc}$



Pumping example

Then we can "cut and paste" part of parse tree





Pumping example

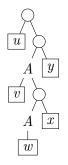
```
We can repeat this many times

aabbcc \Rightarrow aaabbcbcc \Rightarrow aaabbcbcbcc \Rightarrow \dots

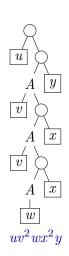
\Rightarrow a(a)^i b(bc)^i c
```

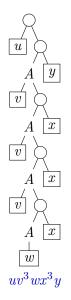
Every sufficiently large derivation will have a middle part that can be repeated indefinitely

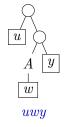
Pumping in general



uvwxy







$$L_3 = \{\mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \ge 0\}$$

If L_3 has a context-free grammar G , then for any sufficiently long $s \in L(G)$

s can be split into s=uvwxy such that L(G) also contains uv^2wx^2y , uv^3wx^3y,\ldots

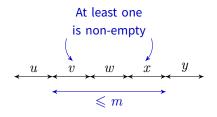
What happens if $s = a^m b^m c^m$

No matter how it is split, $uv^2wx^2y \notin L_3$

Pumping lemma for context-free languages

For every context-free language LThere exists a number m such that for every long string s in L ($|s| \ge m$), we can write s = uvwxy where

- 1. $|vwx| \leq m$
- 2. $|vx| \ge 1$
- 3. For every $i \ge 0$, the string $uv^i wx^i y$ is in L



Pumping lemma for context-free languages

To prove L is not context-free, it is enough to show that

For every m there is a long string $s \in L$, $|s| \ge m$, such that for every way of writing s = uvwxy where

- 1. $|vwx| \leq m$
- **2.** $|vx| \ge 1$

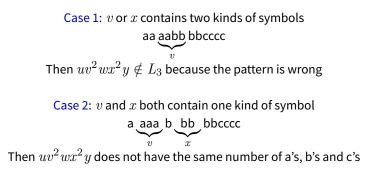
there is $i \ge 0$ such that $uv^i wx^i y$ is not in L

Using the pumping lemma

$$L_3 = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0\}$$

- 1. for every m
- 2. there is $s = a^m b^m c^m$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy ($|vwx|\leqslant m, |vx|\geqslant 1$)
- 4. $uv^2wx^2y \notin L_3$ (but why?)

Using the pumping lemma



Conclusion: $uv^2wx^2y \notin L_3$

Which is context-free?

$$L_{1} = \{a^{n}b^{n} \mid n \ge 0\} \quad \checkmark$$

$$L_{2} = \{z \mid z \text{ has the same number of a's and b's} \quad \checkmark$$

$$L_{3} = \{a^{n}b^{n}c^{n} \mid n \ge 0\} \quad \bigstar$$

$$L_{4} = \{zz^{R} \mid z \in \{a, b\}^{*}\} \quad \checkmark$$

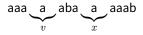
$$L_{5} = \{zz \mid z \in \{a, b\}^{*}\}$$

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy($|vwx| \le m, |vx| \ge 1$)
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy($|vwx| \leq m, |vx| \geq 1$)
- 4. Is $uv^2wx^2y \notin L_5$?



$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b^m a^m b^m$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits *s* into *uvwxy* $(|vwx| \leq m, |vx| \geq 1)$
- 4. Is $uv^i wx^i y \notin L_5$ for some *i*?

Recall that $|vwx| \leq m$

Three cases

- Case 1 aaa aabbb bbaaaaaabbbbb vwx is in the first half of $a^m b^m a^m b^m$
- Case 2 aaaaabb \underbrace{bbbaa}_{vwx} aaabbbbb

vwx is in the middle part of $a^m b^m a^m b^m$

Case 3 aaaaabbbbbaaa <u>aabbb</u> bb vwx is in the second half of $a^m b^m a^m b^m$

Apply pumping lemma with i = 0

Case 1 aaa aabbb bbaaaaabbbbb www. uwy becomes $a^j b^k a^m b^m$, where j < m or k < mCase 2 aaaaabb bbbaa aaabbbbb vwxuwu becomes $a^m b^j a^k b^m$, where i < m or k < maaaaabbbbbaaa aabbb bb Case 3 vwx uwy becomes $a^m b^m a^j b^k$, where j < m or k < m

> Not of the form zzThis covers all cases, so L_5 is not context-free