DFA Minimization, Pumping Lemma CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

$L =$ lang. of strings ending in 111

Can we do it in 3 states?

Even smaller DFA?

 $L =$ lang. of strings ending in 111

Intuitively, needs to remember number of ones recently read

We will show

 ε , 1, 11, 111 are pairwise distinguishable by L

In other words $(\varepsilon, 1), (\varepsilon, 11), (\varepsilon, 111), (1, 11), (1, 111), (11, 111)$ are all distinguishable by *L*

Then use this result from last lecture:

If strings x_1, \ldots, x_n are pairwise distinguishable by L, any DFA accepting L must have at least *n* states

Recap: distinguishable strings

What do we mean by "1 and 11 are distinguishable"?

 (x, y) are distinguishable by L if there is string z such that $xz \in L$ and $yz \notin L$ (or the other way round)

We saw from last lecture

If *x* and *y* are distinguishable by *L*, any DFA accepting *L* must reach different states upon reading *x* and *y*

x y z ✗

Distinguishable strings

Why are 1 and 11 distinguishable by *L*? $L =$ lang. of strings ending in 111

Distinguishable strings

Why are 1 and 11 distinguishable by *L*? $L =$ lang. of strings ending in 111

> Take $z = 1$ $11 \notin L$ $111 \in L$

More generally, why are $\boldsymbol{1}^i$ and $\boldsymbol{1}^j$ distinguishable by L ? $(0 \leq i < j \leq 3)$

$$
\text{Take } z = 1^{3-j}
$$

$$
1^i 1^{3-j} \notin L \qquad 1^j 1^{3-j} \in L
$$

 ε , 1, 11, 111 are pairwise distinguishable by L Thus our 4-state DFA is minimal

DFA minimization

We now show how to turn any DFA for *L* into the minimal DFA for *L*

Minimal DFA and distinguishability

Distinguishable strings must be in different states Indistinguishable strings may end up in the same state

DFA minimial \Leftrightarrow Every pair of distinct states is distinguishable

Distinguishable states

Two states *q* and *r* are distinguishable if

on the same continuation string $z = z_1 \ldots z_k$, one accepts, but the other rejects

Examples of distinguishable states

Which of the following pairs are distinguishable? by which string?

$$
\begin{array}{c} (q_0, q_3) \\ (q_1, q_3) \\ (q_2, q_3) \\ (q_1, q_2) \\ (q_0, q_2) \\ (q_0, q_1) \end{array}
$$

Examples of distinguishable states

Which of the following pairs are distinguishable? by which string?

 (q_0, q_3) distinguishable by ε (q_1, q_3) distinguishable by ε (q_2, q_3) distinguishable by ε (*q*1, *q*2) distinguishable by 0 (q_0, q_2) distinguishable by 0 (q_0, q_1) indistinguishable

Examples of distinguishable states

Which of the following pairs are distinguishable? by which string?

 (q_0, q_3) distinguishable by ε (q_1, q_3) distinguishable by ε (q_2, q_3) distinguishable by ε (*q*1, *q*2) distinguishable by 0 (q_0, q_2) distinguishable by 0 (q_0, q_1) indistinguishable

indistinguishable pairs can be merged

Finding (in)distinguishable states

Phase 1: *q q*

 \overline{a}

If q is accepting and q' is rejecting Mark (q, q') as distinguishable (X)

If (q, q') are marked Mark (r, r') as distinguishable (X)

Phase 3:

Unmarked pairs are indistinguishable Merge them into groups

Finding (in)distinguishable states

Phase 1:

 \overline{a} X

If q is accepting and q' is rejecting Mark (q, q') as distinguishable (X)

If (q, q') are marked Mark (r, r') as distinguishable (X)

Phase 3:

Unmarked pairs are indistinguishable Merge them into groups

Finding (in)distinguishable states

Phase 1:

 \overline{a} X

If q is accepting and q' is rejecting Mark (q, q') as distinguishable (X)

If (q, q') are marked Mark (r, r') as distinguishable (X)

Phase 3:

Unmarked pairs are indistinguishable Merge them into groups

(Phase 1) q_{11} is distinguishable from all other states

(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_0)$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable

(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_1)$ (q_1, q_{11}) is distinguishable

(Phase 2) After going through the whole table once Now we make another pass

(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_0)$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable

(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_{00})$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable

(Phase 2) Nothing changes in the second pass Ready to go to Phase 3

(Phase 3) Merge states into groups (also called equivalence classes)

Minimized DFA:

Why have we found all distinguishable pairs?

Why have we found all distinguishable pairs?

Why have we found all distinguishable pairs?

Why have we found all distinguishable pairs?

Pumping Lemma

Pumping lemma

Another way to show some language is irregular

Example

 $L = \{0^n 1^n \mid n \geqslant 0\}$ is irregular

We reason by contradiction: Suppose we have a DFA *M* for *L* Something must be wrong with this DFA *M* must accept some strings outside *L*

What happens when M gets input $x=\mathsf{0}^{n+1}\mathsf{1}^{n+1}$?

M accepts *x* because $x \in L$

What happens when M gets input $x=\mathsf{0}^{n+1}\mathsf{1}^{n+1}$?

M accepts *x* because $x \in L$

Since M has n states, it must revisit one of its states while reading 0^{n+1}

What happens when M gets input $x=\mathsf{0}^{n+1}\mathsf{1}^{n+1}$?

M accepts *x* because $x \in L$

Since M has n states, it must revisit one of its states while reading 0^{n+1} The DFA must contain a cycle with 0s

What happens when M gets input $x=\mathsf{0}^{n+1}\mathsf{1}^{n+1}$?

M accepts *x* because $x \in L$

Since M has n states, it must revisit one of its states while reading 0^{n+1} The DFA must contain a cycle with 0s The DFA will also accept strings that go around the cycle multiple times But such strings have more 0s than 1s and cannot be in *L*

Pumping lemma for regular languages

For every regular language *L* (say accepted by a DFA with *n* states) for every string $s \in L$ longer than *n* symbols, we can write $s = uvw$ where

- 1. $|uv| \leq n$
- 2. $|v| \geq 1$
- 3. For every $i \geqslant 0$, the string uv^iw is in L

Proving languages are irregular

```
For every regular language L (say accepted by a DFA with n states)
for every string s \in L longer than n symbols,
        we can write s = u v w where
```
- 1. $|uv| \leq n$
- 2. $|v| \geq 1$
- 3. For every $i \geqslant 0$, the string uv^iw is in L

To show that a language *L* is irregular we need to find arbitrarily long *s* so that no matter how the lemma splits *s* into *u*, *v*, *w* (subject to $|uv| \leq n$ and $|v| \geq 1$) we can find $i \geqslant 0$ such that $uv^iw \notin L$

Example

$$
L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mid m > n \geqslant 0 \}
$$

- 1. For any *n* (number of states of an imaginary DFA accepting L_2)
- 2. There is a string $s = 0^{n+1}1^n$
- 3. Pumping lemma splits *s* into $uvw \quad (|uv| \leq n$ and $|v| \geq 1$)
- 4. Choose $i=0$ so that $uv^iw \notin L_2$

Example: 00000011111