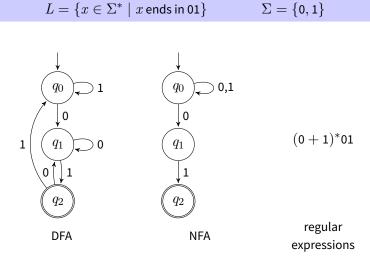
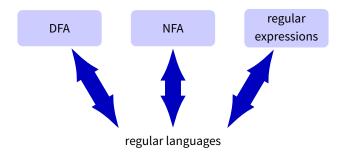
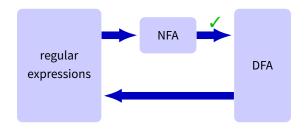
## Equivalence of DFA and Regular Expressions


CSCI 3130 Formal Languages and Automata Theory

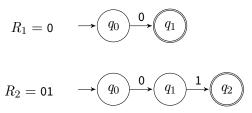
Siu On CHAN


Chinese University of Hong Kong

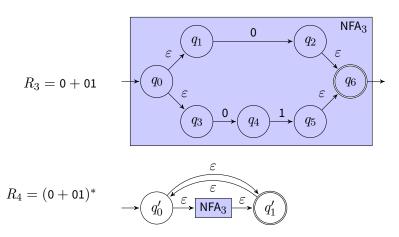
Fall 2017


## Three ways of doing it




## They are equally powerful




## Roadmap



## Examples: regular expression $\rightarrow$ NFA



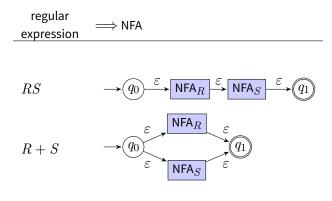
## Examples: regular expression $\rightarrow$ NFA



### Regular expressions

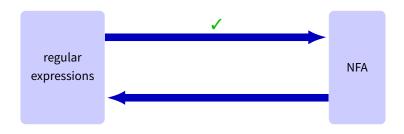
#### In general, how do we convert a regular expression to an NFA?

A regular expression over  $\Sigma$  is an expression formed by the following rules

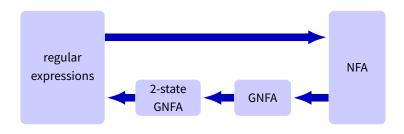

- ▶ The symbols  $\emptyset$  and  $\varepsilon$  are regular expressions
- ightharpoonup Every symbol in  $\Sigma$  is a regular expression
  - If  $\Sigma = \{0, 1\}$ , then 0 and 1 are both regular expressions
- ▶ If R asd S are regular expressions, so are R + S, RS and  $R^*$

# General method when $\Sigma = \{ {\tt 0,1} \}$

| regular<br>expression | $\Longrightarrow$ NFA                 |
|-----------------------|---------------------------------------|
| Ø                     | $\rightarrow q_0$                     |
| $\varepsilon$         | $\rightarrow q_0$                     |
| 0                     | $\rightarrow q_0 \xrightarrow{0} q_1$ |
| 1                     | $\rightarrow q_0 \xrightarrow{1} q_1$ |

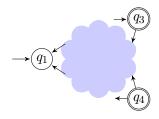

### General method

 $R^*$ 



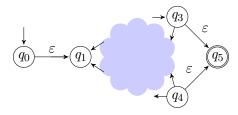

9/19

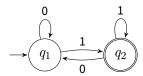
## Roadmap

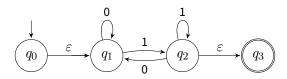



## Roadmap




#### First we simplify the NFA so that

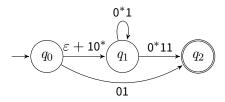

- It has exactly one accepting state
- ▶ No arrows come into the start state
- No arrows go out of the accepting state



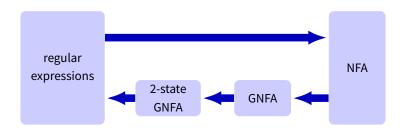

#### First we simplify the NFA so that

- It has exactly one accepting state
- ▶ No arrows come into the start state
- No arrows go out of the accepting state



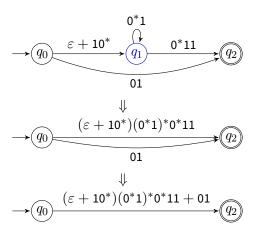






- ▶ It has exactly one accepting state ✓
- ▶ No arrows come into the start state ✓
- ▶ No arrows go out of the accepting state ✓

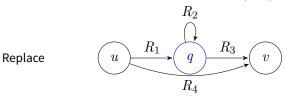
### **Generalized NFAs**

A generalized NFA is an NFA whose transitions are labeled by regular expressions, like




#### **GNFA** state elimination

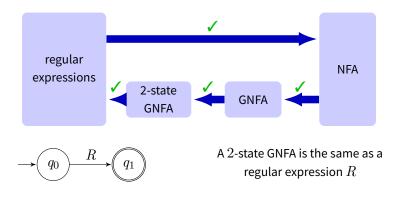



We will eliminate every state but the start and accepting states

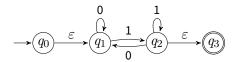
### State elimination



### State elimination: general method

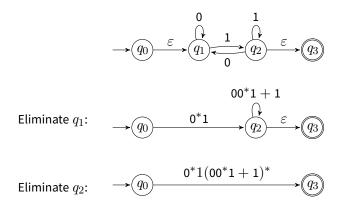

To eliminate state q, for every pair of states (u, v)



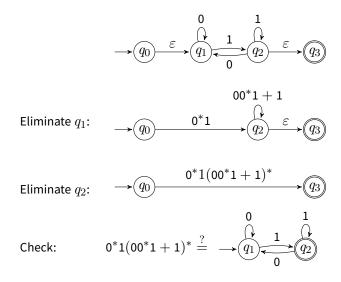

by 
$$\underbrace{u \quad R_1 R_2^* R_3 + R_4}_{} \underbrace{v}$$

Remember to do this even when u = v

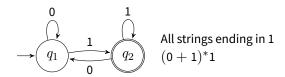
## Roadmap



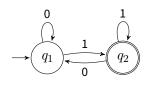

## Conversion example




Eliminate  $q_1$ :


### Conversion example




### Conversion example



## Check your answer!



### Check your answer!



All strings ending in 1  $(0+1)^*1$ 

$$0^*1(00^*1+1)^*$$

Always ends in 1

 $= 0^* 1 (0^* 1)^*$ 

Does every string ending in 1 have this form?

Yes