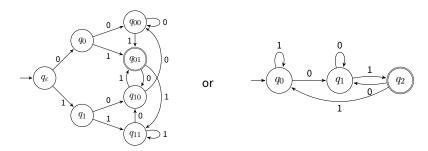
Nondeterministic Finite Automata

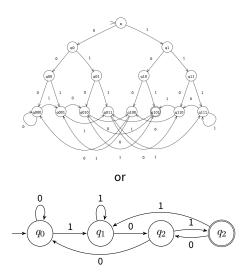
CSCI 3130 Formal Languages and Automata Theory

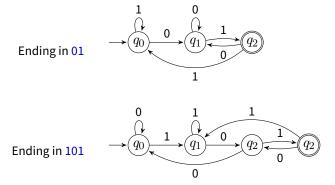

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

Example from last lecture with a simpler solution

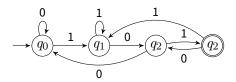

Construct a DFA over alphabet $\{0,1\}$ that accepts all strings ending in 01


Three weeks later: DFA minimization

Another example from last lecture

Construct a DFA over alphabet $\{0,1\}$ that accepts all strings ending in 101

String matching DFAs

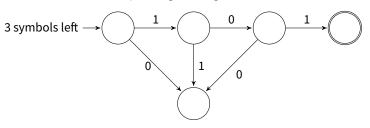


Fast string matching algorithms to turn a pattern into a string matching DFA and execute the DFA:

Boyer–Moore (BM) and Knuth–Morris–Pratt (KMP) (won't cover in class)

Nondeterminism

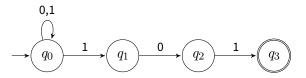
In a few lectures


What problems can finite state machines solve?

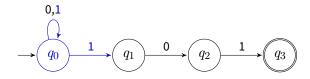
We'll answer this question in the next few lectures
Useful to consider hypothetical machines that are nondeterministic

Even easier with guesses

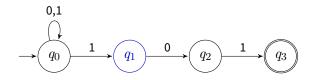
Suppose we could guess when the input string has only 3 symbols left


Accept strings ending in 101:

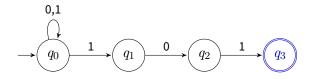
This is not a DFA!


Nondeterministic finite automata

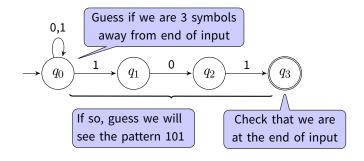
A machine that allows us to make guesses


Each state can have zero, one, or more outgoing transitions labeled by the same symbol

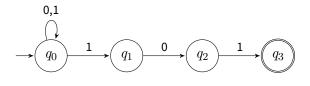
Choosing where to go


 $\mbox{State }q_0 \mbox{ has two transitions labeled 1}$ Upon reading 1, we have the choice of staying at q_0 or moving to q_1

Ability to choose


State q_1 has no transition labeled 1 Upon reading 1 at q_1 , die; upon reading 0, continue to q_2

Ability to choose



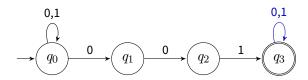
State q_1 has no transition going out Upon reading 0 or 1 at q_3 , die

Meaning of NFA

How to run an NFA

input: 01101

The NFA can have several active states at the same time NFA accepts if at the end, one of its active states is accepting


Example

Construct an NFA over alphabet $\{0,1\}$ that accepts all strings containing the pattern 001 somewhere

11001010, 001001, 111001 should be accepted ε , 000, 010101 should not

Example

Construct an NFA over alphabet $\{0,1\}$ that accepts all strings containing the pattern 001 somewhere

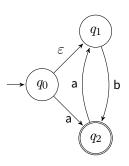
Definition

A nondeterministic finite automaton (NFA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- $ightharpoonup \Sigma$ is an alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \text{subsets of } Q \text{ is a transition function}$
- $q_0 \in Q$ is the initial state
- $ightharpoonup F \subseteq Q$ is a set of accepting states

Differences from DFA:

- lacktriangle transition function δ can go into several states
- \blacktriangleright allows ε -transitions

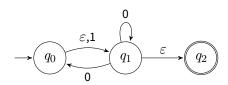

Language of an NFA

The NFA accepts string x if there is some path that, starting from q_0 , ends at an accepting state as x is read from left to right

The language of an NFA is the set of all strings accepted by the NFA

ε -transitions

ε -transitions can be taken for free:

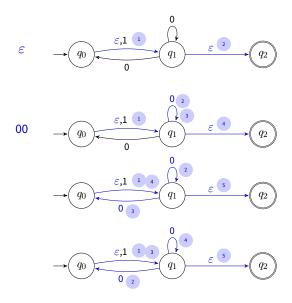

accepts

a, b, aab, bab, aabab, ...

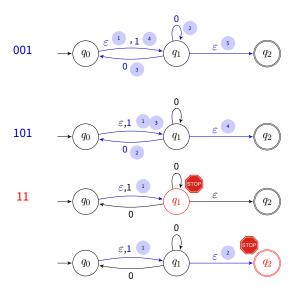
rejects

 ε , aa, ba, bb, ...

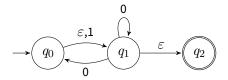
Example



 $\begin{aligned} & \text{alphabet } \Sigma = \{\mathbf{0}, \mathbf{1}\} \\ & \text{states } Q = \{q_0, q_1, q_2\} \\ & \text{initial state } q_0 \\ & \text{accepting states } F = \{q_2\} \end{aligned}$

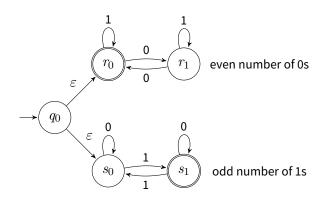

table of transition function δ

		inputs		
		0	1	ε
states	q_0	Ø	$\{q_1\}$	$\{q_1\}$
	q_1	$\{q_0, q_1\}$	Ø	$\{q_2\}$
	q_2	Ø	Ø	Ø


Running NFA

Running NFA

Language of this NFA


What is the language of this NFA?

Example of ε -transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

Example of ε -transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

