CENG4480 Homework 1

Due: Oct. 28, 2019

- Q1 (10%) Given a circuit as shown in Figure 1, input $V_I=1V$, the resistors $R_1=R_2=10k\Omega$, the variable resistor $R_p=20k\Omega$.
 - 1. when the sliding of the variable resistor is connected to A, calculate V_O .
 - 2. when the sliding of the variable resistor is connected to B, calculate V_O .
 - 3. when the sliding of the variable resistor is connected to C (midpoint), calculate V_O .

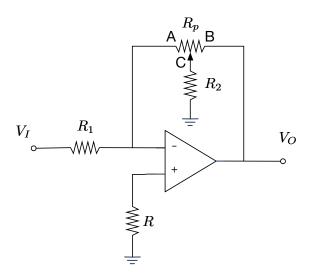


Figure 1: Q1 circuit

Q2 (10%) Given a differential circuit as shown in Figure 2, determine the mathematical relationship among V_O , V_{I1} and V_{I2} .

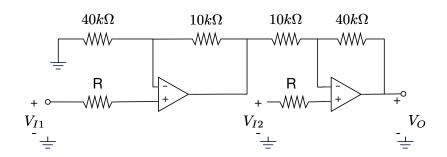


Figure 2: Q2 circuit

- Q3 (10%) Given the inverting amplifier as shown in Figure 3, its supply voltage is $\pm 15V$.
 - 1. Compute and sketch transmission curve between u_i and u_o .

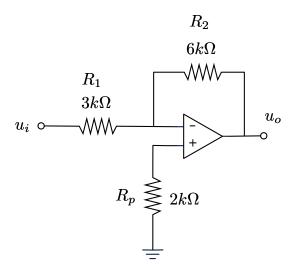


Figure 3: Inverting Amplifier.

2. The input signal is given to be $u_i = 5sin\omega t(V)$, sketch the waveform of u_o .

Q4 (15%) A differential integrator is shown in Figure 4.

- 1. Determine the relationship among u_{i1} , u_{i2} and u_{o} .
- 2. If we want $u_o = 0V$ when $u_{i2} = 1V$, determine u_{i1}
- 3. When t = 0, $u_{i2} = 1V$, $u_{i1} = 0V$, $u_o = 0V$, determine u_o when t = 10s.

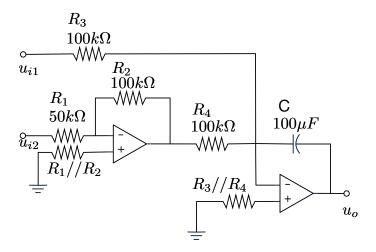


Figure 4: A differential integrator.

Q5 (20%) Given a low-pass filter as shown in Figure 5.

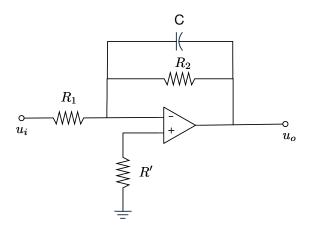


Figure 5: A low-pass filter.

- 1. If $R_1 = 10K\Omega$, $R_2 = 100K\Omega$, determine low-frequency gain $A_u(dB)$;
- 2. If cutoff frequency $f_c = 5Hz$, determine C value.
- **Q6** (10%) Determine the output voltage (i.e. the mathematical expression of $u_o(t)$) for the differentiator circuit of Figure 6 if the input is a triangular wave of amplitude $\pm 0.2V$ and frequency 1Kz. Assume $C=0.1\mu F$, $R_1=200\Omega$, $R_2=10k\Omega$, $R_3=1\Omega$, $R_p=1k\Omega$ and ideal op-amp. The triangular wave starts at t=0 and therefore $u_o(0)=0$.

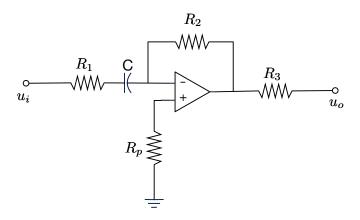


Figure 6: A differentiator circuit.

Q7 (10%) An ADC is used to sample an analog signal.

- 1. If the maximum frequency of the analog signal is 10kHz, determine the minimum sampling frequency.
- 2. As shown in Figure 7, if the ADC is integrating ADC with 10 bits and clock frequency is 1MHz, determine the maximum conversion frequency.
- **Q8** (10%) Let us consider the Schmitt Trigger shown in Figure 8.

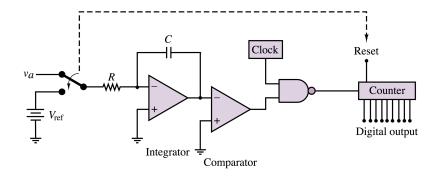


Figure 7: Integrating ADC.

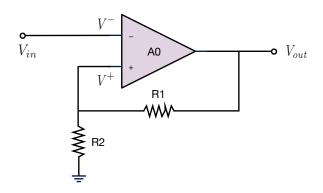


Figure 8: Schmitt Trigger.

- 1. Due to the manufacturing defects, a parasitic resister R_3 occurs between the output node and ground, calculate the reference voltages.
- 2. If the parasitic device is a capacitor C, sketch v_{out} versus v_{in} . Label the key coordinates on the curve.