Dimensionality Reduction with PCA

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

∍∍ [Dimensionality Reduction with PCA](#page-18-0)

Ξ

 QQ

 4 O \rightarrow 4 $\overline{7}$ \rightarrow 4 $\overline{2}$ \rightarrow 4

Let P be a set of n points in d-dimensional space, where d is a very large value (possibly even larger than n). Informally, the goal of dimensionality reduction is to convert P into a set P' of points in a k -dimensional space where $k < d$, such that P' loses as little information about P as possible.

イロト イ母 トイラト イラト

2/19

Example. We can convert 2d points into 1d ones by projecting them onto a line ℓ .

Ξ

 QQ

 \equiv \mathcal{A} .

(ロ) (d)

- \bullet Better mining efficiency and/or effectiveness.
	- Most data mining algorithms work poorly in high dimensional space (a phenomenon known as the curse of dimensionality).
- **•** Compression.
- **Q** Data visualization

 \bullet ...

[Dimensionality Reduction with PCA](#page-0-0)

Ξ

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

- A vector **v** is a $d \times 1$ matrix: $\mathbf{v} = (v[1], ..., v[d])^T$.
- A point can be represented as vector.
- A vector **v** is a unit vector if $\sum_{i=1}^{d} v[i]^2 = 1$.
- Dot product $\mathbf{v}_1 \cdot \mathbf{v}_2 = \sum_{i=1}^d (v_1[i]v_2[i]).$
- **If two vectors** v_1, v_2 **are orthogonal,** $v_1 \cdot v_2 = 0$ **.**
- Let p be a point and v a unit vector. Then, $p \cdot v$ gives the distance from the origin to the projection of p on v .

œ. QQ

イロト イ母 トイヨ トイヨト

Let S be a set of real numbers $r_1, ..., r_m$. The mean of S equals:

$$
mean(S) = \frac{1}{m} \sum_{i=1}^{m} r_i.
$$

The variance of S equals:

$$
var(S) = \frac{1}{m} \sum_{i=1}^{m} (r_i - mean(S))^2.
$$

[Dimensionality Reduction with PCA](#page-0-0)

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

6/19

 QQ D.

Let P be a set of 2d points $p_1, ..., p_n$. Its co-variance between dimensions *i* and *j* (where $1 \le i \le j \le d$) equals

$$
cov = \frac{1}{n} \sum_{k=1}^{n} (p_k[i] - mean_i)(p_k[j] - mean_j)
$$

where mean_i (mean_j) is the mean of the coordinates in P along dimension i (j) .

D. QQ

イロト イ母 トイラト イラト

The co-variance matrix A of point set P is a $d \times d$ matrix whose value at the *i*-th row and *j*-th column $(i, j \in [1, d])$ is the co-variance of P between dimensions i and j .

Note that A is symmetric, namely, $A = A^T$.

Ξ

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

Let A be a $d \times d$ matrix. If for some real value $d \times 1$ unit vector v , it holds that

A v = λ v

then v is called a unit eigenvector of A, and λ is called an eigenvalue of A.

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$

9/19

 QQ D.

Principle Component Analysis (PCA)

algorithm (P, k)

/* output: $k \le d$ directional vectors */

- 1. shift P such that its geometric mean is at the origin of the data space
- 2. $A \leftarrow$ the co-variance matrix of P
- 3. compute all the d unit eigenvectors
- 4. arrange the eigenvectors in descending order of their eigenvalues
- 5. return the first k eigenvectors v_1 , ..., v_k

Note

Each point \boldsymbol{p} is then converted to a k-dimensional point whose *i*-th $(1 \leq i \leq d)$ coordinate is $\mathsf{v}_i \cdot \mathsf{p}$.

イロト イ押ト イラト イラト

Property of PCA

 v_1 is the direction along which the projections of P have the largest variance. In general, \mathbf{v}_i ($i > 1$) is the direction along which P has the largest variance, among all directions orthogonal to all of $v_1, ..., v_{i-1}$.

Next we will prove this fact for v_1 and v_2 . Then, the case with $v_3, ..., v_i$ follows the same idea.

11/19

Formally, let P be a set of n d-dimensional points with zero mean on all dimensions. Let **w** be a unit vector. We can project P onto **w** to obtain a set of 1d values: $S = \{ p \cdot w \mid p \in P \}$. Define the quality of w be var(S).

Theorem 1

The first eigenvector output by PCA has the highest quality.

 $A \oplus B$ and $A \oplus B$ and $A \oplus B$

12/19

Proof of Theorem [1](#page-11-0)

Let X be the $n \times d$ matrix where each row lists out the coordinates of a point in P. Thus, we can view S as a vector Xw . Thus:

$$
var(S) = \frac{1}{n}(Xw)^T(Xw)
$$

= $w^T \frac{X^T X}{n}w$
= $w^T A w$

where \bm{A} is the covariance matrix of P . Hence, we want to maximize the above subject to the constraint that $\boldsymbol{w}^T\boldsymbol{w}=1.$

イロト イ押ト イミト イミト

13/19

 OQ

Proof of Theorem [1](#page-11-0) (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum. Introduce a real value λ , and now consider the objective function

$$
f(\mathbf{w}, \lambda) = \mathbf{w}^T A \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1) \Rightarrow
$$

\n
$$
\frac{\partial f}{\partial \mathbf{w}} = 2A \mathbf{w} - 2\lambda \mathbf{w}
$$

Equating the above 0 gives $Aw = \lambda w$. In other words, w needs to be an eigenvector, and λ the corresponding eigenvalue.

イロト イ母ト イヨト イヨト

14/19

Proof of Theorem [1](#page-11-0) (Cont.)

Now it remains to check which eigenvector gives the largest variance. Observe that:

$$
var(S) = wTAw
$$

= $wT\lambda w$
= λ

In other words, when we choose eigenvector w as our solution, its quality is exactly the eigenvalue λ . Hence, the eigenvector with the maximum eigenvalue is what we are looking for.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

15/19

Recall our earlier definitions. P is a set of n d-dimensional points with zero mean on all dimensions. Let w be a unit vector. Project P onto w to obtain a set of 1d values: $S = \{p \cdot w \mid p \in P\}$. Define the quality of w be var (S) .

Theorem 2

The second eigenvector output by PCA has the highest quality, among all the vectors w orthogonal to the first eigenvector v_1 .

イロト イ押 トイラト イラト

16/19

Proof of Theorem [2](#page-15-0)

Let A be the covariance matrix of P . As shown in the proof of Theorem [1,](#page-11-0) we proved that

$$
var(S) = \mathbf{w}^T A \mathbf{w}.
$$

Hence, we want to maximize the above subject to the constraints $\boldsymbol{w}^T \boldsymbol{w} = 1$ and $\boldsymbol{w}^T \boldsymbol{v_1} = 0$.

Now we apply the method of Lagrange multipliers to find the maximum. Introduce real values λ and ϕ , and now consider the objective function

$$
f(\mathbf{w}, \lambda, \phi) = \mathbf{w}^T A \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1) - \phi \mathbf{w}^T \mathbf{v}_1 \Rightarrow
$$

$$
\frac{\partial f}{\partial \mathbf{w}} = 2A \mathbf{w} - 2\lambda \mathbf{w} - \phi \mathbf{v}_1.
$$

[Dimensionality Reduction with PCA](#page-0-0)

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Proof of Theorem [2](#page-15-0) (Cont.)

The optimal **w** needs to satisfy $\frac{\partial f}{\partial \mathbf{w}} = 0$, namely:

$$
2Aw - 2\lambda w - \phi v_1 = 0. \qquad (1)
$$

Next we prove that ϕ must be 0. To see this, multiplying both sides of (1) by $\boldsymbol{v_1}^T$, we get:

$$
2\mathbf{v_1}^T A \mathbf{w} - 2\lambda \mathbf{v_1}^T \mathbf{w} + \phi \mathbf{v_1}^T \mathbf{v_1} = 0. \tag{2}
$$

We know that $\mathbf{v_1}^T\mathbf{w}=0$, and $\mathbf{v_1}^T\mathbf{v_1}=1$. Furthermore,

$$
\mathbf{v_1}^T A \mathbf{w} = \mathbf{w}^T A^T \mathbf{v_1} = \mathbf{w}^T A \mathbf{v_1} = \mathbf{w}^T (A \mathbf{v_1}) = \mathbf{w}^T \mathbf{v_1} = 0.
$$

Hence, from [\(2\)](#page-17-1), we get $\phi = 0$.

[Dimensionality Reduction with PCA](#page-0-0)

イロト イ母 トイラト イラト

18/19

Proof of Theorem [2](#page-15-0) (Cont.)

Therefore, from [\(1\)](#page-17-0), we know:

$$
2\mathbf{A}\mathbf{w}-2\lambda\mathbf{w} = 0
$$

namely, w must also be an eigenvector.

From the proof of Theorem [1,](#page-11-0) we know that $var(S)$ equals the eigenvalue corresponding to w . This thus indicates that w is the eigenvector of A with the second largest eigenvalue.

 \mathcal{A} $\overline{\mathcal{B}}$ is a \mathcal{B} is a \mathcal{A}

19/19