Page Ranks and Random Walks

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Y Tao [Page Ranks and Random Walks](#page-20-0)

э

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

We will discuss **page ranks** on a directed graph, which reflect vertices' "importance". We will also take the opportunity to discuss the theory of random walks (a.k.a. Markov chains), which generalize the stochastic process underlying page ranks.

 $A \equiv 1.4$

2/21

Internet as a Graph

Represent WWW as a directed graph $G = (V, E)$:

- \bullet Each webpage is a node in V .
- E has an edge from v_1 to v_2 if page v_1 has a link to page v_2 .

If a page v has no links, add a link to itself.

3/21

Random Surfing

- $\bullet u$ = the page we are currently at (initially, $u =$ an arbitrary page).
- 2 Toss a coin with a "heads" probability α .
- \bullet If the coin comes up heads, follow a random link in u and set u to the new page
- \bullet Otherwise (tails), set u to a random page in G call this a reset.
- **5** Repeat from Step 1.

画

 QQ

イロメ イ母メ イラメ イラメ

A page's **page rank** is the probability of being the t -th page visited when $t = \infty$.

The probability is not affected by the choice of the first page (this will become clear later).

 \rightarrow \equiv \rightarrow

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

5/21

 QQ

Access Probability

Example:

Assume that $\alpha = 4/5$ and the 1st page chosen is v_1 . What is the probability of the event "2nd page $= v_3$ "? This happens if one of the following takes place:

- The coin comes up heads and we follow the link from v_1 to v_3 ; probability = $\frac{4}{5} \cdot \frac{1}{2} = \frac{2}{5}$.
- Tails and the reset picks v_3 ; probability $=$ $\frac{1}{5} \cdot \frac{1}{5} = \frac{1}{25}$.

Hence, the probability is $\frac{1}{25} + \frac{2}{5} = \frac{11}{25}$.

Access Probability

Example (cont.):

What is the probability of "3rd page $= v_4$ "? This happens if one of the following takes place:

- 2nd page $= v_3$, the coin comes up heads, and we follow the link from v_3 to v_4 ; probability $= \frac{11}{25} \cdot \frac{4}{5} \cdot \frac{1}{2} = \frac{22}{125}$.
- Tails and the reset picks v_4 ; probability $= \frac{1}{25}$.

Hence, the probability is $\frac{22}{125} + \frac{1}{25} = \frac{27}{125}$.

7/21

Access Probability

Given a vertex $v \in V$ and an integer $t \geq 1$, define $p(v, t)$ to be the probability of " $v =$ the t-th page". Then:

$$
p(v, t+1) = \frac{1-\alpha}{|V|} + \alpha \cdot \sum_{u \in in(v)} \frac{p(u, t)}{outdeg(u)}
$$

where

- $in(v)$ is the set of **in-neighbors** of v;
- o *outdeg(v)* is the **out-degree** of v .

画

 QQ

イロト イ母 トイラト イラト

 $\sqrt{\text{Access Probability}} \Rightarrow \text{Page Rank}$

When $t \to \infty$, we **always** have:

$$
p(v, t+1) = p(v, t)
$$

for all $v \in V$. The value of $p(v, t)$ at that moment is the **page rank** of v.

∍

э

 QQ

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

Next, we will discuss how page ranks are related to the wellestablished theory of random walks. We will see that page ranks form an eigenvector of a matrix that depends only on G and α .

 \rightarrow \equiv

 \leftarrow \overline{m} \rightarrow

10/21

An $n \times n$ matrix *M* is called a **stochastic matrix** if:

- \bullet every value in M is non-negative;
- the values of each column sum up to 1.

Þ

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Every stochastic matrix M defines a random walk:

- Define a directed graph G_{markov} with nodes $v_1, ..., v_n$. For every non-zero entry $M[j, i]$ of M $(1 \le i, j \le n)$, G_{markov} has an edge from v_i to v_j .
- **•** Initially, pick an arbitrary vertex as the first stop.
- Inductively, assuming that v_i is the t-th stop $(t \geq 1)$, move to an out-neighbor v_i with probability $M[j, i]$. That neighbor is the $(t + 1)$ -th stop.

The above stochastic process is also called a **Markov chain**.

Y Tao [Page Ranks and Random Walks](#page-0-0)

 $A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A$

12/21

A random walk is **irreducible** if the nodes of G_{markov} are mutually reachable.

A random walk is **aperiodic** if the following is true: every vertex in G_{markov} has a non-zero probability of being visited at every $t \geq t_0$ for some sufficiently large t_0 .

An $n \times 1$ vector P is a **probability vector** if:

- \bullet each component in P is a value between 0 and 1;
- all components of P sum up to 1.

Theorem: Let M be a stochastic matrix describing an irreducible and aperiodic random walk. Then, there is a unique probability vector P satisfying $P = MP$.

The proof is non-trivial and omitted.

 P is the stationary probability vector of the random walk. Note that it is an eigenvector of M corresponding to the eigenvalue 1.

14/21

 $Random$ Surfing $=$ Random Walk

The random surfing process we saw earlier is a random walk. Given v_i as the current stop, we jump to v_i with probability

•
$$
\frac{1-\alpha}{n}
$$
 if v_i has no link to v_j ;

 $\frac{1-\alpha}{n} + \frac{\alpha}{outdeg(v_i)}$ otherwise.

Define M as an $n \times n$ matrix with $M[j, i]$ set to the above probability.

Think: Why is the random walk irreducible and aperiodic?

 \mathbf{A} and \mathbf{A} is a set of \mathbf{B} in \mathbf{A}

15/21

 $Random$ Surfing $=$ Random Walk

As before, let $p({\sf v}_i,t)$ $(1\leq i\leq n)$ be the probability of " ${\sf v}_i=$ the t -th stop". Define

$$
P(t) = \left[\begin{array}{c}p(v_1,t)\\p(v_2,t)\\...\\p(v_n,t)\end{array}\right]
$$

From Slide [8,](#page-7-0) we know:

$$
P(t+1) = M \cdot P(t).
$$

÷

 QQ

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup B$

 $Random$ Surfing $=$ Random Walk

When $P(t + 1) = P(t)$, $P(t)$ is the solution of P in

$$
P = MP.
$$

By the theorem in Slide [14,](#page-13-0) P uniquely exists, which proves the uniqueness of page ranks.

 $A \sqcup A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A$

17/21

 QQ

We can calculate P with the following algorithm (known as the **power** method):

- 1. $P(1) \leftarrow (1, 0, ..., 0)^T$ and $t \leftarrow 1$
- 2. for $t = 2, 3, ...$ do
- 3. $P(t + 1) = M \cdot P(t)$

In practice, terminate the algorithm at some reasonably large t (e.g., 100). Next, we will show that the algorithm converges quickly.

マーター マーティング

18/21

Define r_i $(1 \leq i \leq n)$ as the page rank of v_i . We will consider the following error metric:

$$
Err(t) = \sum_{i=1}^{n} |p(v_i, t) - r_i|.
$$
 (1)

We will prove:

Lemma:
$$
Err(t) \leq \alpha \cdot Err(t-1)
$$
.

This implies $Err(t) \, \leq \, \alpha^t \cdot Err(0)$ and, hence, $Err(t) \, \leq \, \epsilon$ after $t = O(\log \frac{1}{\epsilon})$ rounds.

Y Tao [Page Ranks and Random Walks](#page-0-0)

重

 QQ

イロト イ押ト イミト イミト

By definition of stationary vector, we know that for each $i \in [1, n]$,

$$
r_i = \frac{1-\alpha}{n} + \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{r_j}{\text{outdeg}(v_j)}.
$$

By how the power method runs, we know:

$$
p(v_i, t) = \frac{1-\alpha}{n} + \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{p(v_j, t-1)}{\text{outdeg}(v_j)}.
$$

The above equations yield

$$
|p(v_i, t) - r_i| \leq \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{|p(v_j, t-1) - r_j|}{outdeg(v_j)}.
$$
 (2)

 $4.11 \times 4.49 \times 4.$

 \rightarrow \equiv \rightarrow **Y Tao** [Page Ranks and Random Walks](#page-0-0)

÷. **SIL** 20/21

 QQ

By combining [\(1\)](#page-18-0) and [\(2\)](#page-19-0), we have:

$$
Err(t) \leq \alpha \cdot \sum_{v_i} \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{|p(v_j, t-1) - r_j|}{outdeg(v_j)}.
$$

Observe that $\frac{|p(v_j,t-1)-r_j|}{outdeg(v_j)}$ is added exactly $outdeg(v_j)$ times on the right hand side. Therefore:

$$
Err(t) \leq \alpha \cdot \sum_{v_i} |p(v_i, t-1) - r_i| = \alpha \cdot Err(t-1)
$$

which completes the proof.

 \overline{AB}

21/21

 QQ