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In this lecture, we will discuss another fundamental topic in data
mining: clustering.

At a high level, the objective of clustering can be stated as follows.
Let P be a set of objects. We want to divide P into several
groups—each of which is called a cluster—satisfying the following
conditions:

(Homogeneity) Objects in the same cluster should be similar
to each other.

(Heterogeneity) Objects in different clusters should be
dissimilar.
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Typically, the similarity between two objects o1, o2 is measured by
a distance function dist(o1, o2): the larger dist(o1, o2), the less
similar they are.

We will consider only distance functions satisfying the triangle
inequality, namely, for any objects o1, o2, o3, it holds that:

dist(o1, o2) + dist(o2, o3) ≥ dist(o1, o3)
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Today we will focus on centroid-based partitioning, which works
as follows. Let k be the number of clusters desired. It first
identifies k objects c1, ..., ck (which are not necessarily in P) called
centriods. Then, it forms clusters P1, P2, ..., Pk where Pi includes
all the objects in P that have ci as their nearest centroid. Formally:

Pi = {o ∈ P | dist(o, ci ) ≤ dist(o, cj) ∀j ∈ [1, k]}

If an object o happens to be equi-distance from two centroids
ci , cj , it can be assigned to either Pi or Pj arbitrarily.
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We will discuss two classic algorithms of centroid-based
partitioning:

1 k-center

2 k-means
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k-center
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Problem

Let P be a set of n objects in Rd , and k be an integer at most n. Let C
be a set of objects in Rd ; we refer to C as a centroid set. Define for
each object o ∈ P, its centroid distance as

dC (o) = min
c∈C

dist(o, c).

The radius of C is defined to be

r(C ) = max
o∈P

dC (o).

The goal of the k-center problem is to find a centroid set C of size k
with the minimum radius.
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This problem is NP-hard, namely, no algorithm can solve the problem in
time polynomial to both n and k (unless P = NP). Hence, we will aim to
find approximate answers with precision guarantees.

Let C∗ be an optimal centroid set for the k-center problem. A set C of k

objects is ρ-approximate if r(C ) ≤ ρ · r(C∗). We will give an algorithm

that guarantees to return a 2-approximate solution.
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A 2-Approximate Algorithm

algorithm k-center (P)

/* this algorithm returns a 2-approximate subset C */

1. C ← ∅
2. add to C an arbitrary object in P
2. for i = 2 to k
3. o ← an object in P with the maximum dC (o)
4. add o to C
5. return C

The algorithm can be easily implemented in O(nk) time.
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Example

Example: k = 3

c1

Initially, C = {c1}
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Example

Example: k = 3

c1
c2

After a round, C = {c1, c2}
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Example

Example: k = 3

c1
c2

c3

After another round, C = {c1, c2, c3}
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Example

Example: k = 3

c1
c2

c3

r(C ) is the radius of the largest circle.
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Theorem

The k-center algorithm is 2-approximate.

Proof

Let C∗ = {c∗1 , c∗2 , ..., c∗k } be an optimal centroid set, i.e., it has the
smallest radius r(C∗). Let P∗1 ,P

∗
2 , ...,P

∗
k be the optimal clusters, namely,

P∗i (1 ≤ i ≤ k) contains all the objects that find c∗i as the closest
centroid among all the centroids in C∗.

Let C = {c1, c2, ..., ck} be the output of our algorithm. We want to
prove r(C ) ≤ 2r(C∗).
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Proof (cont.).

Case 1: C has an object in each of P∗1 ,P
∗
2 , ...,P

∗
k .

Take any object o ∈ P. We will prove that dC (o) ≤ 2r(C∗), which in
turn will establish the fact that r(C ) ≤ 2r(C∗).

Suppose that o ∈ P∗i (for some i ∈ [1, k]), and c is an object in C ∩P∗i .
It holds that:

dC (o) ≤ dist(c , o)

≤ dist(c , c∗) + dist(c∗, o)

≤ 2r(C∗).
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Proof (cont.).

Case 2: At least one of P∗1 , ...,P
∗
k covers no object in C . By the pigeon

hole principle, one of P∗1 , ...,P
∗
k must cover at least two objects

c1, c2 ∈ C . It thus follows that

dist(c1, c2) ≤ 2r(C∗).

Next we will prove r(C ) ≤ dist(c1, c2) which will complete the whole
proof.

Without loss of generality, assume that c2 was picked after c1 by our
algorithm. Hence, c2 has the largest centroid distance at this moment
(by how our algorithm runs). Therefore, any object o ∈ P has a centroid
distance at most dist(c1, c2) at this moment. Its centroid distance can
only decrease in the rest of the algorithm. It thus follows that
r(C ) ≤ dist(c1, c2).
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k-means
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The k-means problem is defined only on point objects.

Problem

Let P be a set of n points (a.k.a. objects), and k be an integer at most
n. Let C be a set of points in Rd ; we refer to C as a centroid set.
Define for each object o ∈ P its centroid distance as

dC (o) = min
c∈C

dist(o, c)

where dist(o, c) is the straight line distance between p and c . The cost
of C is defined to be

φ(C ) =
∑
o∈P

d2
C (o).

The goal of the k-means problem is to find a centroid set C of size k
with the minimum cost.

The problem is once again NP-hard.
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algorithm k-means (P)

1. C ← an arbitrary subset of P with size k
2. repeat
3. Cold ← C

/* assume Cold = {c ′1, ..., c ′k} */
4. partition P into P1, ...,Pk such that Pi (1 ≤ i ≤ k) is the set of

objects that find c ′i as the nearest centroid (among the centroids
in Cold). if an object o is equi-distant from two centroids c ′i and c ′j ,
it is assigned to Pi or Pj arbitrarily

5. for i = 1 to k
6. ci ← the geometric center of Pi

7. C = {c1, ..., ck}
8. until Cold = C
9. return C

Remark: The geometric center of a point set P is the point whose i-th

coordinate is the average of all the i-th coordinates of the points in P.
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Example

Suppose k = 2. Points c ′1 and c ′2 are the initial two centroids which are
chosen arbitrarily.

Round 1.

c′1 c′2
c1

c2

P1 includes all the black points (they are closer to c ′1 than c ′2), and P2

the red points. c1 and c2 are the new centroids.
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Example

Points c ′1 and c ′2 are the two centroids from the last round.

Round 2.

c′1
c′2

c1

c2

P1 includes all the black points, and P2 the red points. c1 and c2 are the
new centroids.
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Example

Points c ′1 and c ′2 are the two centroids from the last round.

Round 3.

(c′1)

(c′2)

c1

c2

P1 includes all the black points, and P2 the red points. The new
centroids c1 and c2 are idential to c ′1 and c ′2, respectively. The algorithm
therefore terminates.

22 / 30 Y Tao Clustering: Centroid-Based Partitioning



23/30

An important question to answer is whether the k-means algorithm can
run forever. Next we will prove that it will not, namely, it will always
terminate.

We will need the lemma below:

Lemma

Let P be a set of points in Rd , and c the geometric center of P. For any
point q ∈ Rd such that q 6= c , it holds that∑

p∈P
(dist(c , p))2 <

∑
p∈P

(dist(q, p))2.

The proof is elementary, and omitted. Hint: take the derivative of∑
p∈P(dist(q, p))2 with respect to each coordinate of q.

23 / 30 Y Tao Clustering: Centroid-Based Partitioning



24/30

Theorem

The k-means algorithm always terminates.

Proof

First observe that there can be only a finite number of centroid sets that
can possbily be produced at the end of each round (think: why?). We
will show that after each round, the cost of the centroid set is strictly
lower than that of the old centroid set, unless the two centroid sets are
identical. This implies that the algorithm must terminate eventually.
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Proof (Continued.)

Let Cold = {c ′1, ..., c ′k} be the old centroid set at the beginning of a
round. By definition, its cost equals φ(Cold) =

∑
o∈P(dCold

(o))2. Let
P1, ...,Pk be the partitions obtained at Line 4 of the algorithm in
Slide 19. We can thus rewrite φ(Cold) as:

φ(Cold) =
k∑

i=1

∑
o∈Pi

(dist(o, c ′i ))2

Let C = {c1, ..., ck} be the new centroid set obtained at Line 7. By the
lemma of the previous slide, we know∑

o∈Pi

(dist(o, c ′i ))2 ≥
∑
o∈Pi

(dist(o, ci ))2

where the equality holds only if c ′i = ci . In other words, if Cold 6= C , then

φ(Cold) >
∑k

i=1

∑
o∈Pi

(dist(o, ci ))2.
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Proof (Continued.)

By definition, dC (o) ≤ dist(o, ci ) where o is an object in Pi . Hence,

k∑
i=1

∑
o∈Pi

(dist(o, ci ))2 ≥
k∑

i=1

∑
o∈Pi

(dC (o))2

= φ(C )

We thus have shown φ(Cold) > φ(C ), which completes the whole
proof.
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The rest of the slides will not be tested in the quizzes and final
exam.

27 / 30 Y Tao Clustering: Centroid-Based Partitioning



28/30

Let C∗ be an optimal centroid set for the k-means problem. A centroid
set C is said to be ρ-approximate if φ(C ) ≤ ρ · φ(C∗).

The k-means algorithm on Slide 28 does not have a bounded
approximation ratio. In other words, the centroid set C it returns can
have a cost that is greater than φ(C∗) by an arbitrarily large ratio (i.e.,
ρ =∞).

Next, we describe a technique to choose the initial centroid set carefully,

which will lead to a good approximation ratio.
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In the algorithm of Slide 19, replace the centroid set C at Line 1 with the
centroid set returned by the following algorithm.

algorithm k-seeding (P)

1. c ← a random point chosen uniformly from P
2. C = {c}
3. for i = 2 to k
4. c ← a point from P chosen as follows: each p ∈ P is chosen as c

with probability (dC (p))
2∑

p′∈P (dC (p
′))2

5. if c /∈ C then
6. add c to C
7. else go to Line 4
8. return C
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It is known that a centroid set chosen as in the previous slide already
guarantees an O(log k) approximation ratio in expectation.

The proof falls out of the scope of this course, but can be found in:
David Arthur, Sergei Vassilvitskii: k-means++: the advantages of careful
seeding. SODA 2007: 1027-1035.

In practice, one can run k-means by using the above centroid set as the

initial centroid set. Remember k-means strictly improves the quality of

the centroid set after every single round.
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