More Generalization Theorems

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Y Tao 2008 120 2009 12:00 [More Generalization Theorems](#page-15-0)

Ξ

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Classification

Let $A_1, ..., A_d$ be d attributes, where A_i ($i \in [1, d]$) has domain $dom(A_i) = \mathbb{R}$. **Instance space** $\mathcal{X} = \text{dom}(A_1) \times \text{dom}(A_2) \times ... \times \text{dom}(A_d) = \mathbb{R}^d$. Label space $\mathcal{Y} = \{-1, 1\}.$

Each **instance-label pair** (a.k.a. **object**) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

 \boldsymbol{x} is a vector; we use $\boldsymbol{x}[A_i]$ to represent the vector's value on A_i $(1 \leq i \leq d).$

Denote by $\mathcal D$ a probabilistic distribution over $\mathcal X \times \mathcal Y$.

画

 Ω

イロメ イ母メ イラメ イラメ

Classification

Goal: Given an object (x, y) drawn from D , we want to predict its label y from its attribute values $x[A_1], ..., x[A_d]$.

A classifier is a function

$$
h:\mathcal{X}\to\mathcal{Y}.
$$

Denote by H a collection of classifiers.

The **error of** h on D (i.e., generalization error) is defined as:

$$
err_{\mathcal{D}}(h) = \textbf{Pr}_{(x,y)\sim\mathcal{D}}[h(x) \neq y].
$$

We want to learn a classifier $h \in \mathcal{H}$ with small err_D(h) from a training set S where each object is drawn independently from D .

イロト イ母 トイラト イラト

3/16

We want to learn a classifier $h \in \mathcal{H}$ with small err_D(h) from a training set S where each object is drawn independently from D .

The **error of** h on S (i.e., empirical error) is defined as:

$$
err_S(h) = \frac{\left| (x, y) \in S \mid h(x) \neq y \right|}{|S|}.
$$

4/16

Let P be a set of points in \mathbb{R}^d . Given a classifier $h \in \mathcal{H}$, we define:

$$
P_h = \{p \in P \mid h(p) = 1\}
$$

namely, the set of points in P that h classifies as 1.

H shatters P if, for any subset $P' \subseteq P$, there exists a classifier $h \in \mathcal{H}$ satisfying $P' = P_h$.

5/16

Example: An extended linear classifier h is described by a ddimensional weight vector w and a threshold τ . Given an instance $\mathbf{x} \in \mathbb{R}^d$, $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} \ge \tau$, or -1 otherwise. Let \mathcal{H} be the set of all extended linear classifiers.

In 2D space, H shatters the set P of points shown below.

Y Tao North Communist Communist

Example (cont.): Can you find 4 points in \mathbb{R}^2 that can be shattered by H ?

4 0 8

The answer is **no**. Can you prove this?

7/16

 QQ

Let P be a subset of X. The **VC-dimension** of H on P is the size of the largest subset $P \subseteq \mathcal{P}$ that can be shattered by \mathcal{H} .

If the VC-dimension is λ , we write $VC\text{-dim}(\mathcal{P}, \mathcal{H}) = \lambda$.

Y Tao North Communist Communist

 \Box \rightarrow \land \Box \rightarrow \Box

8/16

VC Dimension of Extended Linear Classifiers

Theorem: Let H be the set of extended linear classifiers. $\text{VC-dim}(\mathbb{R}^d, \mathcal{H}) = d + 1.$

The proof is outside the syllabus.

Example: We have seen earlier that when $d = 2$, H can shatter at least one set of 3 points but cannot shatter any set of 4 points. Hence, $VC\text{-dim}(\mathbb{R}^2, \mathcal{H}) = 3$.

Think: Now consider H as the set of linear classifiers (where the threshold τ is fixed to 0). What can you say about $\mathrm{VC}\text{-}\mathrm{dim}(\mathbb{R}^d,\mathcal{H})$?

 $\Box \rightarrow \neg \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box$

9/16

VC-Based Generalization Theorem

The support set of $\mathcal D$ is the set of points in $\mathbb R^d$ that have a positive probability to be drawn according to D.

Theorem: Let P be the support set of D and set $\lambda =$ $VC-dim(\mathcal{P}, \mathcal{H})$. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that

$$
err_D(h) \leq err_S(h) + \sqrt{\frac{8 \ln \frac{4}{\delta} + 8\lambda \cdot \ln \frac{2e|S|}{\lambda}}{|S|}}
$$
.

for **every** $h \in \mathcal{H}$, where S is the set of training points.

The proof is outside the syllabus.

The new generalization theorem places **no constraints** on the size of H .

Think: What implications can you draw about the Perceptron algorithm?

 \rightarrow \pm

4 m x 4 m x 4 m

11/16

 QQ

If a set H of classifiers is "**more powerful**" — namely, having a greater VC dimension $-$ it is **more difficult** to learn because a larger training set is needed.

For the set H of (extended) linear classifiers, the training set size needs to be $\Omega(d)$ to ensure a small generalization error. This becomes a problem when d is large. In fact, in some situations we may even want to work with $d = \infty$.

Next, we will introduce another generalization theorem for the **linear** classification problem.

Recall:

Linear classifier: A function $h: \mathcal{X} \rightarrow \mathcal{Y}$ where h is defined by a d -dimensional weight vector w such that

$$
\bullet \ \ h(x)=1 \ \text{if} \ \mathbf{x}\cdot\mathbf{w}\geq 0;
$$

•
$$
h(x) = -1
$$
 otherwise.

S is **linearly separable** if there is a d-dimensional vector w such that for each $p \in S$:

 $\bullet \mathbf{w} \cdot \mathbf{p} > 0$ if \mathbf{p} has label 1;

 $\bullet \mathbf{w} \cdot \mathbf{p} < 0$ if \mathbf{p} has label -1 .

The linear classifier that w defines is said to separate S .

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

13/16

Let h be a linear classifier defined by a d-dimensional vector w . We say that h is **canonical** if for every point $p \in S$:

• $w \cdot p > 1$ if p has label 1

• $w \cdot p \le -1$ if p has label -1 ;

and the equality holds on at least one point in S .

Think: If h separates S, it always has a canonical form. Why?

14/16

つQへ

Margin-Based Generalization Theorem

Theorem: Let H be the set of linear classifiers. Suppose that the training set S is linearly separable. Fix a value δ satisfying $0 < \delta < 1$. It holds with probability at least $1 - \delta$ that,

$$
err_D(h) \leq \frac{4R \cdot |\mathbf{w}|}{\sqrt{|S|}} + \sqrt{\frac{\ln \frac{2}{\delta} + \ln \lceil \log_2(R|\mathbf{w}|) \rceil}{|S|}}.
$$

for **every canonical** $h \in \mathcal{H}$, where **w** is the *d*-dimensional vector defining h and

$$
R=\max_{\boldsymbol{p}\in S}|\boldsymbol{p}|.
$$

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Margin-Based Generalization Theorem

Why is the theorem "margin-based"? The margin of the separation plane defined by w equals $1/|\mathbf{w}|$.

When the training set S is linearly separable, we should find a separation plane with the **largest** margin.

16/16

つQへ