Linear Classification: Maximizing the Margin

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [Linear Classification: Maximizing the Margin](#page-28-0)

Ξ.

 QQ

イロト イ母 トイヨ トイヨト

Recall:

S is linearly separable if there is a d-dimensional vector w such that for each $p \in S$:

 $\bullet \mathbf{w} \cdot \mathbf{p} > 0$ if \mathbf{p} has label 1;

• $w \cdot p < 0$ if p has label -1 .

The plane $w \cdot x = 0$ is a **separation plane** of S.

There can be many separation planes. As discussed previously, we should find the plane with the **largest margin**. In this lecture, we will discuss how to achieve the purpose.

Ξ

 Ω

 $A \cap \overline{B} \cap A \cap A \cap \overline{B} \cap A \cap A \cap \overline{B} \cap A$

We prefer the left plane.

In

 \leftarrow \Box \rightarrow \sim A H \mathcal{A} э È

 299

Let S be a linearly separable set of points in \mathbb{R}^d . In the large margin separation problem, we want to find a separation plane with the maximum margin.

An algorithm solving this problem is called a **support vector machine**.

母 ト ィ ヨ ト ィ

4/29

Next, we will discuss two methods. The first one finds the **optimal** solution but is computationally expensive. The second method is (much) faster but gives an **approximate** solution close to optimality.

Ξ

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

Finding the Optimal Plane

Yufei Tao **[Linear Classification: Maximizing the Margin](#page-0-0)**

■ → 2990

メロメ (御) メモンメモン

We will model the problem as a **quadratic programing** problem.

Consider an arbitrary separation plane $w' \cdot x = 0$. Imagine two copies of the plane, one moving up and the other down, at the same speed. They stop as soon as a plane hits a point in S .

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

7/29

Now, focus on the two copies of the plane in their final positions. If one copy has equation $w' \cdot x = \tau$, the other copy must have equation $w' \cdot x = -\tau$, where $\tau > 0$.

For each point $p \in S$, we must have:

- if p has label 1, then $w' \cdot p \geq \tau$;
- if p has label -1 , then $w' \cdot p \leq -\tau$.

By dividing τ on both sides of each inequality, we have:

• if
$$
p
$$
 has label 1, then $w \cdot p \ge 1$;

• if *p* has label
$$
-1
$$
, then $\mathbf{w} \cdot \mathbf{p} \le -1$

where

$$
w = \frac{w'}{\tau}.
$$

G.

 Ω

イロメ イ母メ イラメ イラメ

We will refer to the following plane as π_1

$$
\mathbf{w} \cdot \mathbf{x} = 1
$$

the following plane as π_2

$$
\mathbf{w} \cdot \mathbf{x} = -1
$$

The margin of the original separation plane is exactly half of the distance between π_1 and π_2 :

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

Þ

 Ω

Lemma: The distance between π_1 and π_2 is $\frac{2}{|w|}$.

Hence, the margin of the separation plane $\mathbf{w} \cdot \mathbf{x} = 0$ is $\frac{1}{|\mathbf{w}|}$.

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

Ξ.

 QQ

イロト イ母 トイヨ トイヨト

Proof: Take an arbitrary point p_1 on π_1 and an arbitrary point p_2 on π_2 . Hence, $\mathbf{w} \cdot \mathbf{p}_1 = 1$ and $\mathbf{w} \cdot \mathbf{p}_2 = -1$. It follows that $\mathbf{w} \cdot (\mathbf{p}_1 - \mathbf{p}_2) = 2$.

The distance between the two planes is precisely $\frac{\mathsf{w}}{|\mathsf{w}|}\cdot(\boldsymbol{p}_1-\boldsymbol{p}_2)=\frac{2}{|\mathsf{w}|}.$

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

11/29

In summary of the above, to solve the large margin separation problem, we want to find w with the smallest $|w|$, subject to:

• For each point $p \in S$ of label 1:

$$
\mathbf{w}\cdot\mathbf{p}\geq 1
$$

• For each point $p \in S$ of label -1 :

$$
\boldsymbol{w}\cdot\boldsymbol{p}\leq-1
$$

This is an instance of quadratic programming.

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

重

 Ω

イロト イ母 トイラト イラト

In theory, the quadratic programming instance can be solved using convex-optimization techniques whose efficiency is rather difficult to analyze. We will not discuss this direction further.

重

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Finding an Approximate Plane

Yufei Tao **[Linear Classification: Maximizing the Margin](#page-0-0)**

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約९०

Define γ_{opt} as the maximum margin of all separation planes. A separation plane is c-approximate if its margin is at least $c \cdot \gamma_{opt}$. We will give an algorithm to find a $(1/4)$ -approximate separation plane.

D. Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Recall that a separation plane is given by $w \cdot x = 0$. The goal is to find a good w.

Our weapon is once again Perceptron. But we will correct w not only when a point falls on the wrong side of the plane, **but also** when the point is too close to the plane.

For now, let us assume we are given an arbitrary value $\gamma_{\text{guess}} \leq \gamma_{\text{opt}}$. A point p causes a **violation** in any of the following situations:

- **Its distance to the plane** $\mathbf{w} \cdot \mathbf{x} = 0$ **is less than** $\gamma_{\text{guess}}/2$ **, regardless of** its label.
- p has label 1 but $w \cdot p < 0$.
- p has label -1 but $w \cdot p > 0$.

KIT KIYA MARKAT DI KI

16/29

Margin Perceptron

The algorithm starts with $w = 0$ and runs in **iterations**.

In each iteration, it tries to find a **violation point** $p \in S$. If found, the algorithm adjusts w as follows:

- if p has label 1, $w \leftarrow w + p$.
- otherwise, $w \leftarrow w p$.

The algorithm finishes where no violation points are found.

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

重

 Ω

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Define $R = \max_{p \in S} {\vert p \vert}$, i.e., the maximum distance from the origin to the points in S.

Theorem: If $\gamma_{\text{guess}} \leq \gamma_{\text{opt}}$, margin Perceptron terminates in at most $12R^2/\gamma_{opt}^2$ iterations and returns a separation plane with margin at least $\gamma_{\text{guess}}/2$.

The proof can be found in the appendix.

 $AB \rightarrow AB \rightarrow AB$

18/29

Margin Perceptron requires a parameter $\gamma_{\text{guess}} \leq \gamma_{\text{opt}}$. By the theorem on the previous slide, a larger γ_{guess} promises a better quality guarantee.

Ideally, an ideal value for γ_{guess} is γ_{opt} , but unfortunately, we do not know γ_{opt} . Next, we present a strategy to estimate γ_{opt} up to a factor of 1/2.

重

 Ω

イロト イ母 トイラト イラトー

An Incremental Algorithm

 \bullet R \leftarrow the maximum distance from the origin to the points in S

2 $\gamma_{\text{guess}} \leftarrow R$

3 Run margin Perceptron with parameter γ_{guess} .

• [Self-Termination]

If the algorithm terminates with a plane π , return π as the final answer.

• [Forced-Termination]

If the algorithm has not terminated after $\frac{12R^2}{\gamma^2}$ $\frac{12R^2}{\gamma_{guess}^2}$ iterations:

- Stop the algorithm manually.
- Set $\gamma_{\text{guess}} \leftarrow \gamma_{\text{guess}}/2$.
- Repeat Line 3.

イロト イ母 トイヨ トイヨ トーヨー

20/29

Theorem: Our incremental algorithm returns a separation plane with margin at least $\gamma_{opt}/4$. Furthermore, it performs $O(R^2/\gamma_{opt}^2)$ iterations in total (including all the repeats at Line 3).

Proof: Suppose that we repeat Line 3 in total h times. For each $i \in [1, h]$, denote by γ_i the value of γ_{guess} at the *i*-th time we execute Line 3.

By the fact that the $(i - 1)$ -th repeat required a forced termination, we know that $\gamma_{h-1} > \gamma_{opt}$. Hence, $\gamma_h = \gamma_{h-1}/2 > \gamma_{opt}/2$. It thus follows that the plane we return must have a margin at least $\gamma_h/2 > \gamma_{opt}/4$.

The total number of iterations performed is

$$
O\left(\sum_{i=1}^{h} \frac{R^2}{\gamma_i^2}\right) = O\left(\frac{R^2}{\gamma_h^2} + \frac{R^2}{4\gamma_h^2} + \frac{R^2}{4^2\gamma_h^2} + ...\right) = O(R^2/\gamma_h^2) = O(R^2/\gamma_{opt}^2).
$$

Appendix: Proof of the Theorem on Slide [18.](#page-17-0)

Yufei Tao **[Linear Classification: Maximizing the Margin](#page-0-0)**

イロト (個) (ミ) (ミ) (ミ) ミーのQ (^

Let π^* be the the optimal plane with margin γ_{opt} .

Define $\boldsymbol{\mathit{u}}$ as the unit normal vector of π^* pointing to the positive side of π^* ; in other words, we have:

- $|u| = 1.$
- For every point $p \in S$ of label 1, $p \cdot u > 0$.
- For every point $p \in S$ label -1 , $p \cdot u < 0$.

$$
\bullet \ \gamma_{opt}=\min_{p\in S}\{|{\boldsymbol p}\cdot{\boldsymbol u}|\}.
$$

Recall that the perceptron algorithm adjusts w in each iteration. Let k be the total number of adjustments. Denote by w_i ($i \ge 1$) the value of w after the *i*-th adjustment; and define $w_0 = (0, ..., 0)$.

重

 Ω

Claim 1: $|w_k| \geq w_k \cdot u \geq k \gamma_{\text{opt}}$.

Proof: We will first prove: for any $i > 0$, it holds that.

$$
\mathbf{w}_{i+1} \cdot \mathbf{u} \geq \mathbf{w}_i \cdot \mathbf{u} + \gamma_{\text{opt}}.\tag{1}
$$

Due to symmetry, we will prove the above only for the case where w_{i+1} is adjusted from w_i due to a violation point p of label 1. In this case, ${\bf w}_{i+1} = {\bf w}_i + {\bf p}$; and hence, ${\bf w}_{i+1} \cdot {\bf u} = {\bf w}_i \cdot {\bf u} + {\bf p} \cdot {\bf u}$. From the definition of γ_{opt} , we know that $\boldsymbol{p} \cdot \boldsymbol{u} \geq \gamma_{opt}$, which gives [\(1\)](#page-23-0).

It then follows from [\(1\)](#page-23-0) that

$$
|\mathbf{w}_{k}| \geq \mathbf{w}_{k} \cdot \mathbf{u}
$$

\n
$$
\geq \mathbf{w}_{k-1} \cdot \mathbf{u} + \gamma_{opt}
$$

\n
$$
\geq \mathbf{w}_{k-2} \cdot \mathbf{u} + 2\gamma_{opt}
$$

\n...
\n
$$
\geq \mathbf{w}_{0} + k\gamma_{opt} = k\gamma_{opt}.
$$

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

Claim 2: $|w_{i+1}| \leq |w_i| + R$.

Proof: We will prove only the case where w_{i+1} is adjusted from w_i using a violation point p of label 1. In this case:

$$
|\mathbf{w}_{i+1}|=|\mathbf{w}_i+\mathbf{p}|\leq |\mathbf{w}_i|+|\mathbf{p}|\leq |\mathbf{w}_i|+R.
$$

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

D. QQ

 $A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \rightarrow B \rightarrow A$

Claim 3:
$$
|\mathbf{w}_{i+1}| \leq |\mathbf{w}_i| + \frac{R^2}{2|\mathbf{w}_i|} + \frac{\gamma_{opt}}{2}
$$
.

Proof: We will prove only the case where w_{i+1} is adjusted from w_i using a violation point **p** of label 1. In other words, $w_{i+1} = w_i + p$. Hence:

$$
\begin{array}{rcl}\n|\mathbf{w}_{i+1}|^2 &=& \mathbf{w}_{i+1} \cdot \mathbf{w}_{i+1} = (\mathbf{w}_i + \mathbf{p})^2 = \mathbf{w}_i \cdot \mathbf{w}_i + 2\mathbf{w}_i \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{p} \\
&=& |\mathbf{w}_i|^2 + 2\mathbf{w}_i \cdot \mathbf{p} + |\mathbf{p}|^2.\n\end{array}
$$

Since p is a violation point, it must hold that $\frac{\bm{w}_i}{|\bm{w}_i|}\cdot \bm{p}<\gamma_{guess}/2\leq \gamma_{opt}/2.$ Furthermore, obviously, $|\boldsymbol{p}|^2 \leq R^2$. We thus have:

$$
|\mathbf{w}_{i+1}|^2 \leq |\mathbf{w}_i|^2 + \gamma_{opt} |\mathbf{w}_i| + R^2 \leq \left(|\mathbf{w}_i| + \frac{R^2}{2|\mathbf{w}_i|} + \frac{\gamma_{opt}}{2}\right)^2.
$$

The claim then follows.

 $A \oplus B$ and $A \oplus B$ and $A \oplus B$

26/29

Claim 4: When $|\mathbf{w}_i| \geq \frac{2R^2}{\gamma_{opt}}$ $\frac{2R^2}{\gamma_{opt}}$, $|\mathbf{w}_{i+1}| \leq |\mathbf{w}_i| + (3/4)\gamma_{opt}.$ Proof: Directly follows from Claim 3.

Ξ. R

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$

Claim 5: $|\boldsymbol{w}_k| \leq \frac{2R^2}{\gamma_{opt}}$ $\frac{2R^2}{\gamma_{opt}}+\frac{3k\gamma_{opt}}{4}+R.$

Proof: Let j be the largest i satisfying $|\boldsymbol{w}_i| < \frac{2R^2}{\gamma_{opt}}$ $\frac{2\mathcal{R}^2}{\gamma_{opt}}$. If $j=k$, then $|\boldsymbol{w}_k| < \frac{2R^2}{\gamma_{opt}}$ $\frac{2K^+}{\gamma_{opt}}$, and we are done. Next, we focus on the case $j < k;$ note that this means $|\textbf{w}_{j+1}|, |\textbf{w}_{j+2}|, ..., |\textbf{w}_k|$ are all at least $2R^2/\gamma_{opt}$.

$$
|\mathbf{w}_{k}| \leq |\mathbf{w}_{k-1}| + (3/4)\gamma_{opt} \qquad \text{(Claim 4)}
$$

\n
$$
\leq |\mathbf{w}_{k-2}| + 2 \cdot (3/4)\gamma_{opt} \qquad \text{(Claim 4)}
$$

\n
$$
\leq |\mathbf{w}_{j+1}| + (k - j - 1)(3/4)\gamma_{opt} \qquad \text{(Claim 4)}
$$

\n
$$
\leq |\mathbf{w}_{j+1}| + (3k/4)\gamma_{opt} \qquad \text{(Claim 4)}
$$

\n
$$
\leq |\mathbf{w}_{j}| + R + (3k/4)\gamma_{opt} \qquad \text{(Claim 2)}
$$

\n
$$
\leq \frac{2R^2}{\gamma_{opt}} + R + (3k/4)\gamma_{opt}.
$$

Yufei Tao [Linear Classification: Maximizing the Margin](#page-0-0)

 $AB + AB + AB +$

Combining Claims 1 and 5 gives:

$$
k\gamma_{opt} \leq \frac{2R^2}{\gamma_{opt}} + \frac{3k\gamma_{opt}}{4} + R \Rightarrow
$$

\n
$$
k \leq \frac{8R^2}{\gamma_{opt}^2} + \frac{4R}{\gamma_{opt}}
$$

\n(by $R \geq \gamma_{opt}$) $\leq \frac{8R^2}{\gamma_{opt}^2} + \frac{4R^2}{\gamma_{opt}^2}$
\n $\leq \frac{12R^2}{\gamma_{opt}^2}.$

This completes the proof of the theorem.

Yufei Tao **Linear Classification:** Maximizing the Margin

÷.

 QQ

メロメメ 御 メメ きょくきょう