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Recall:

S is linearly separable if there is a d-dimensional vector w such
that for each p ∈ S :

w · p > 0 if p has label 1;

w · p < 0 if p has label −1.

The plane w · x = 0 is a separation plane of S .

There can be many separation planes. As discussed previously, we
should find the plane with the largest margin. In this lecture, we
will discuss how to achieve the purpose.
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Review: Margins

margin
margin

We prefer the left plane.
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Let S be a linearly separable set of points in Rd . In the large
margin separation problem, we want to find a separation plane
with the maximum margin.

margin

An algorithm solving this problem is called a support vector machine.
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Next, we will discuss two methods. The first one finds the optimal

solution but is computationally expensive. The second method is (much)

faster but gives an approximate solution close to optimality.
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Finding the Optimal Plane
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We will model the problem as a quadratic programing problem.

Consider an arbitrary separation plane w ′ · x = 0. Imagine two copies of
the plane, one moving up and the other down, at the same speed. They
stop as soon as a plane hits a point in S .

margin

π1

π2
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Now, focus on the two copies of the plane in their final positions. If one
copy has equation w ′ · x = τ , the other copy must have equation
w ′ · x = −τ , where τ > 0.

For each point p ∈ S , we must have:

if p has label 1, then w ′ · p ≥ τ ;

if p has label −1, then w ′ · p ≤ −τ .

By dividing τ on both sides of each inequality, we have:

if p has label 1, then w · p ≥ 1;

if p has label −1, then w · p ≤ −1

where

w =
w ′

τ
.
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We will refer to the following plane as π1

w · x = 1

the following plane as π2

w · x = −1

The margin of the original separation plane is exactly half of the distance
between π1 and π2:

margin

π1

π2
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Lemma: The distance between π1 and π2 is 2
|w | .

Hence, the margin of the separation plane w · x = 0 is 1
|w | .
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Proof: Take an arbitrary point p1 on π1 and an arbitrary point p2 on π2.
Hence, w · p1 = 1 and w · p2 = −1. It follows that w · (p1 − p2) = 2.

ρ1

ρ2

p1

p2

~p1 − ~p2

~w

The distance between the two planes is precisely
w
|w | · (p1 − p2) = 2

|w | .
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In summary of the above, to solve the large margin separation problem,
we want to find w with the smallest |w |, subject to:

For each point p ∈ S of label 1:

w · p ≥ 1

For each point p ∈ S of label −1:

w · p ≤ −1

This is an instance of quadratic programming.
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In theory, the quadratic programming instance can be solved using

convex-optimization techniques whose efficiency is rather difficult to

analyze. We will not discuss this direction further.
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Finding an Approximate Plane
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Define γopt as the maximum margin of all separation planes.
A separation plane is c-approximate if its margin is at least c · γopt .
We will give an algorithm to find a (1/4)-approximate separation plane.
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Recall that a separation plane is given by w · x = 0. The goal is to find a
good w .

Our weapon is once again Perceptron. But we will correct w not only
when a point falls on the wrong side of the plane, but also when the
point is too close to the plane.

For now, let us assume we are given an arbitrary value γguess ≤ γopt .
A point p causes a violation in any of the following situations:

Its distance to the plane w · x = 0 is less than γguess/2, regardless of
its label.

p has label 1 but w · p < 0.

p has label −1 but w · p > 0.
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Margin Perceptron

The algorithm starts with w = 0 and runs in iterations.

In each iteration, it tries to find a violation point p ∈ S . If found, the
algorithm adjusts w as follows:

if p has label 1, w ← w + p.

otherwise, w ← w − p.

The algorithm finishes where no violation points are found.
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Define R = maxp∈S{|p|}, i.e., the maximum distance from the origin to
the points in S .

Theorem: If γguess ≤ γopt , margin Perceptron terminates in at
most

12R2/γ2opt

iterations and returns a separation plane with margin at least
γguess/2.

The proof can be found in the appendix.
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Margin Perceptron requires a parameter γguess ≤ γopt . By the theorem on
the previous slide, a larger γguess promises a better quality guarantee.

Ideally, an ideal value for γguess is γopt , but unfortunately, we do not know

γopt . Next, we present a strategy to estimate γopt up to a factor of 1/2.
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An Incremental Algorithm

1 R ← the maximum distance from the origin to the points in S

2 γguess ← R

3 Run margin Perceptron with parameter γguess .

[Self-Termination]
If the algorithm terminates with a plane π, return π as the
final answer.

[Forced-Termination]

If the algorithm has not terminated after 12R2

γ2
guess

iterations:

Stop the algorithm manually.
Set γguess ← γguess/2.
Repeat Line 3.
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Theorem: Our incremental algorithm returns a separation plane
with margin at least γopt/4. Furthermore, it performs O(R2/γ2opt)
iterations in total (including all the repeats at Line 3).

Proof: Suppose that we repeat Line 3 in total h times. For each
i ∈ [1, h], denote by γi the value of γguess at the i-th time we execute
Line 3.

By the fact that the (i − 1)-th repeat required a forced termination, we
know that γh−1 > γopt . Hence, γh = γh−1/2 > γopt/2. It thus follows
that the plane we return must have a margin at least γh/2 > γopt/4.

The total number of iterations performed is

O

(
h∑

i=1

R2

γ2i

)
= O

(
R2

γ2h
+

R2

4γ2h
+

R2

42γ2h
+ ...

)
= O(R2/γ2h) = O(R2/γ2opt).
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Appendix: Proof of the Theorem on Slide 18.
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Let π∗ be the the optimal plane with margin γopt .

Define u as the unit normal vector of π∗ pointing to the positive side of
π∗; in other words, we have:

|u| = 1.

For every point p ∈ S of label 1, p · u > 0.

For every point p ∈ S label −1, p · u < 0.

γopt = minp∈S{|p · u|}.

Recall that the perceptron algorithm adjusts w in each iteration. Let k

be the total number of adjustments. Denote by w i (i ≥ 1) the value of

w after the i-th adjustment; and define w 0 = (0, ..., 0).
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Claim 1: |w k | ≥ w k · u ≥ kγopt .

Proof: We will first prove: for any i ≥ 0, it holds that.

w i+1 · u ≥ w i · u + γopt . (1)

Due to symmetry, we will prove the above only for the case where w i+1

is adjusted from w i due to a violation point p of label 1. In this case,
w i+1 = w i + p; and hence, w i+1 · u = w i · u + p · u. From the definition
of γopt , we know that p · u ≥ γopt , which gives (1).

It then follows from (1) that

|w k | ≥ w k · u
≥ w k−1 · u + γopt

≥ w k−2 · u + 2γopt

...

≥ w 0 + kγopt = kγopt .
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Claim 2: |w i+1| ≤ |w i |+ R.

Proof: We will prove only the case where w i+1 is adjusted from w i

using a violation point p of label 1. In this case:

|w i+1| = |w i + p| ≤ |w i |+ |p| ≤ |w i |+ R.
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Claim 3: |w i+1| ≤ |w i |+ R2

2|w i | +
γopt

2 .

Proof: We will prove only the case where w i+1 is adjusted from w i using
a violation point p of label 1. In other words, w i+1 = w i + p. Hence:

|w i+1|2 = w i+1 ·w i+1 = (w i + p)2 = w i ·w i + 2w i · p + p · p
= |w i |2 + 2w i · p + |p|2.

Since p is a violation point, it must hold that w i

|w i | · p < γguess/2 ≤ γopt/2.

Furthermore, obviously, |p|2 ≤ R2. We thus have:

|w i+1|2 ≤ |w i |2 + γopt |w i |+ R2 ≤
(
|w i |+

R2

2|w i |
+
γopt

2

)2

.

The claim then follows.
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Claim 4: When |w i | ≥ 2R2

γopt
, |w i+1| ≤ |w i |+ (3/4)γopt .

Proof: Directly follows from Claim 3.
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Claim 5: |w k | ≤ 2R2

γopt
+

3kγopt

4 + R.

Proof: Let j be the largest i satisfying |w i | < 2R2

γopt
. If j = k, then

|w k | < 2R2

γopt
, and we are done. Next, we focus on the case j < k; note

that this means |w j+1|, |w j+2|, ..., |w k | are all at least 2R2/γopt .

|w k | ≤ |w k−1|+ (3/4)γopt (Claim 4)

≤ |w k−2|+ 2 · (3/4)γopt (Claim 4)

...

≤ |w j+1|+ (k − j − 1)(3/4)γopt (Claim 4)

≤ |w j+1|+ (3k/4)γopt

≤ |w j |+ R + (3k/4)γopt (Claim 2)

≤ 2R2

γopt
+ R + (3k/4)γopt .
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Combining Claims 1 and 5 gives:

kγopt ≤ 2R2

γopt
+

3kγopt
4

+ R ⇒

k ≤ 8R2

γ2opt
+

4R

γopt

(by R ≥ γopt) ≤ 8R2

γ2opt
+

4R2

γ2opt

≤ 12R2

γ2opt
.

This completes the proof of the theorem.
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