Classification, Decision Trees, and a Generalization Theorem

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

In classification, we are given a training set containing objects of two classes, and want to learn a classifier to predict the class of an object outside the training set. This course will cover several techniques to perform classification effectively. We will start with one such technique: the decision tree method.

Classification

Let $A_1, ..., A_d$ be d attributes.

Define the **instance space** as $\mathcal{X} = dom(A_1) \times dom(A_2) \times ... \times dom(A_d)$ where $dom(A_i)$ represents the set of possible values on A_i .

Define the **label space** as $\mathcal{Y} = \{-1, 1\}$ (the elements in \mathcal{Y} are called the **class labels**).

Each instance-label pair (a.k.a. object) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

• x is a vector; we use $x[A_i]$ to represent the vector's value on A_i $(1 \le i \le d)$.

Denote by \mathcal{D} a probabilistic distribution over $\mathcal{X} \times \mathcal{Y}$.

Classification

Goal: Given an object (x, y) drawn from \mathcal{D} , we want to predict its label y from its attribute values $x[A_1], ..., x[A_d]$.

We will find a function

$$h: \mathcal{X} \to \mathcal{Y}$$

which is referred to as a classifier (sometimes also called a **hypothesis**). Given an instance x, we predict its label as h(x).

The error of h on \mathcal{D} — denoted as $err_{\mathcal{D}}(h)$ — is defined as:

$$err_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}}[h(\mathbf{x}) \neq y]$$

namely, if we draw an object (x, y) according to \mathcal{D} , what is the probability that h mis-predicts the label?

Classification

Ideally, we want to find an h to minimize $err_{\mathcal{D}}(h)$, but this in general is not possible without the precise information about \mathcal{D} .

Instead, We would like to learn a classifier h with small $err_{\mathcal{D}}(h)$ from a **training set** S where each object is drawn independently from \mathcal{D} .

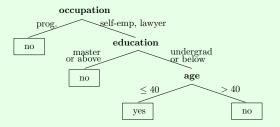
Example: Suppose that we have the following training set:

age	education	occupation	loan default
28	high school	self-employed	yes
32	master	programmer	no
33	undergrad	lawyer	yes
37	undergrad	programmer	no
40	undergrad	self-employed	yes
45	master	self-employed	no
48	high school	programmer	no
50	master	laywer	no
52	master	programmer	no
55	high school	self-employed	no

Now, given a new customer (50, high school, self-employed), how should we predict whether s/he would default?

The **decision tree method** represents a classifier *h* as a tree.

Example:



Given an instance (50, high school, self-employed), the above tree returns the class label "no" by descending a root-to-leaf path to the rightmost leaf.

Formally, a decision tree T is a binary tree where

- ullet each leaf node carries a class label: yes or no (namely, 1 or -1);
- each internal node u has two child nodes, and carries a predicate P_u on an attribute A_u .

Given an instance \mathbf{x} , T predicts its label as follows:

- $u \leftarrow \text{the root of } T.$
- ② If u is a leaf, return the class label associated with u.
- **1** If u is an internal node, check whether $x[A_u]$ satisfies P_u :
 - if so, $u \leftarrow$ the left child of u;
 - otherwise, $u \leftarrow$ the right child of u.

Our objective is to produce a good decision tree from the training set S. Next, we will describe a simple algorithm called the **Hunt's** algorithm which achieves the purpose reasonably well in practice.

Given a node u in T, define S(u) as follows:

- If u is the root of T, S(u) = S.
- Recursively, consider now u as an internal node whose S(u) has been defined. Let v_1, v_2 be the left and right child nodes of u, respectively.
 - $S(v_1)$ is the set of objects in S(u) that satisfy P(u);
 - $S(v_2) = S(u) \setminus S(v_1)$.

Think: What is S(u) for each node u in the decision tree on Slide 7?

Hunt's Algorithm

The algorithm builds a T in a top-down and greedy manner. At each node u, it finds the "best" way to split S(u) according to a certain quality metric.

algorithm Hunt(S)

- /* S is the training set; the function returns the root of a decision tree */
- 1. if all the objects in S belong to the same class
- 2. return a leaf node with the value of this class
- 3. if all the objects in S have the same attribute values
- 4. return a leaf node whose class label is the majority one in S
- 5. find the "best" split attribute A^* and predicate P^* /* details next slide */
- 6. $S_1 \leftarrow$ the set of objects in S satisfying P^* ; $S_2 \leftarrow S \setminus S_1$
- 7. $u_1 \leftarrow \operatorname{Hunt}(S_1); u_2 \leftarrow \operatorname{Hunt}(S_2)$
- 8. create a root u with left child u_1 and right child u_2
- 9. set $A_u \leftarrow A^*$, and $P_u \leftarrow P^*$
- 10. return u

Implementing Line 5 requires resolving the following issues:

- What are the possible ways to perform a split?
- 2 How to evaluate the quality of a split?

We will provide a way to resolve these issues in the next few slides.

Candidate Split

A split concerns a single attribute A. We distinguish two types of A:

- Ordinal: there is an ordering on A.
- Nominal: no ordering makes sense on A.

Example: In the training set of Slide 6, age and education are ordinal attributes, whereas occupation is nominal.

Candidate Split

For an ordinal attribute A, a **candidate split** is a condition of the form $A \le v$, where v is a value of A appearing in S such that S has at least one object satisfying the condition, and has at least one object that does not.

For a nominal attribute A, a **candidate split** is be a condition of the form $A \in S$, where S is a subset of the values of A appearing in S such that S has at least one object satisfying the condition, and has at least one object that does not.

Example: In the training set of Slide 6, "age \leq 40", "education \leq undergrad", and "occupation \in {self-employed, lawyer}" are all candidate split predicates. But "age \leq 41", "age \leq 55", "education \leq elementary", and "occupation \in {professor, lawyer}" are not.

Quality of a Split

Next, we tackle the second issue of Slide 11 by resorting to **GINI index**.

In general, let *S* be a set of objects whose class labels are known. Define:

$$n = |S|$$
 $n_y = \text{number of objects in } S \text{ with label yes}$
 $p_y = n_y/n$
 $p_n = 1 - p_y$

The GINI index of S is:

$$GINI(S) = 1 - (p_y^2 + p_n^2)$$

Quality of a Split

Example:

- If $p_y = 1$ and $p_n = 0$ (i.e., maximum purity), then GINI(R) = 0.
- If $p_v = 0.75$ and $p_n = 0.25$, then GINI(R) = 0.375.
- If $p_y = 0.5$ and $p_n = 0.5$ (i.e., maximum impurity), then GINI(R) = 0.5.

It is rudimentary to verify:

Lemma: GINI(R) ranges from 0 to 0.5. It increases as $|p_y - p_n|$ decreases.

Y Tao

Quality of a Split

We are ready to resolve the second issue on Slide 11. Suppose that S has been split into S_1 and S_2 . We define the **GINI index of the split** as

$$GINI_{split} = \frac{|S_1|}{|S|}GINI(S_1) + \frac{|S_2|}{|S|}GINI(S_2).$$

The smaller GINI_{split} is, the better the split quality.

At this point, we have completed the description of Hunt's algorithm on Slide 10. An important issue has been left out: **overfitting**, i.e., although a tree may fit the training set well, its error on the distribution \mathcal{D} is actually rather bad.

Next, we will discuss understand what causes overfitting, and then fix the issue by modifying the algorithm slightly.

Let \mathcal{P} be the set of people in the world. Given a random person, we want to predict whether s/he drinks.

Suppose that there are no attributes (i.e., $\mathcal{X} = \emptyset$). Given a training set $S \subseteq \mathcal{P}$, Hunt's algorithm returns a decision tree T that has only a single node (i.e., a leaf). Let c be the label at that leaf; clearly, T will predict the label of every person in \mathcal{P} as c.

Which value of c is ideal for \mathcal{P} ? This depends on how many people in \mathcal{P} belong to the yes class. Specifically, let

$$\pi_y = \frac{\text{number of people in } \mathcal{P} \text{ of yes}}{|\mathcal{P}|}$$
 $\pi_n = \frac{\text{number of people in } \mathcal{P} \text{ of no}}{|\mathcal{P}|}$

The optimal choice is to set c to yes if $\pi_v > \pi_n$, or to no otherwise.

Example: Suppose $\pi_y = 0.7$ and $\pi_n = 0.3$. If c = yes, we err with probability 0.3; if c = no, we err with probability 0.7.

However, π_y and π_n are unknown.

We rely on S to guess the relationship between π_y and π_n . If S has more yes objects, we guess $\pi_y > \pi_n$ and, hence, set c to yes; otherwise, we set c to no. This is precisely what Hunt's algorithm does.

How to make sure we obtain a good guess? Obviously we need S to be **sufficiently large**.

Without enough training data, you should not hope to build a reliable decision tree (lack of statistical significance).

As Hunt's algorithm builds a decision tree T, the |S(u)| of the current node u continuously decreases as we go deeper. When |S(u)| becomes too small, statistical significance is lost such that the subtree of u becomes unreliable: even though the subtree may fit the training set well, it does not accurately predict the label of an unknown object falling into the subtree. Therefore, **overfitting** occurs.

Hunt's Algorithm (Modified)

We now add a heuristic to the algorithm to alleviate overfitting.

algorithm Hunt(S)

- /st S is the training set; the function returns the root of a decision tree st/
- 1. if all the objects in S belong to the same class
- 2. return a leaf node with the value of this class
- 3. if (all the objects in S have the same attribute values) or (|S| is too small)
- 4. return a leaf node whose class value is the majority one in S
- 5. find the "best" split attribute A^* and predicate P^*
- 6. $S_1 \leftarrow$ the set of objects in R satisfying P^* ; $S_2 \leftarrow S \setminus S_1$
- 7. $u_1 \leftarrow \operatorname{Hunt}(R_1); u_2 \leftarrow \operatorname{Hunt}(R_2)$
- 8. create a root u with left child u_1 and right child u_2
- 9. set $A_u \leftarrow A^*$, and $P_u \leftarrow P^*$
- 10. return u

Next, we will provide a theoretical explanation about overfitting.

Given a classifier h, define its **error on** S — denote as $err_S(h)$ — to be:

$$err_{S}(h) = \frac{|\{(\mathbf{x}, y) \in S \mid h(\mathbf{x}) \neq y\}|}{|S|}.$$

namely, the percentage of objects in S whose labels are incorrectly predicted by h.

Remark:

- $err_S(h)$ is often called the **empirical error** of h.
- $err_{\mathcal{D}}(h)$ is often called the **generalization error** of h.

Y Tao

Generalization Theorem

Theorem: Let \mathcal{H} be the set of classifiers that can possibly be returned. The following statement holds with probability at least $1-\delta$ (where $0<\delta\leq 1$): for any $h\in\mathcal{H}$:

$$err_{\mathcal{D}}(h) \leq err_{\mathcal{S}}(h) + \sqrt{\frac{\ln(1/\delta) + \ln|H|}{2|\mathcal{S}|}}.$$

Implications: we should

- look for a decision tree that is both accurate on the training set and small in size;
- increase the size of S as much as possible.

To prove the generalization theorem, we need:

Theorem (Hoeffding Bounds): Let $X_1,...,X_n$ be independent Bernoulli random variables satisfying $Pr[X_i = 1] = p$ for all $i \in [1, n]$. Set $s = \sum_{i=1}^n X_i$. Then, for any $0 \le \alpha \le 1$:

$$Pr[s/n > p + \alpha] \le e^{-2n\alpha^2}$$

 $Pr[s/n .$

The proof of the theorem is beyond the scope of this course.

Y Tao

We will also need:

Lemma (Union Bound): Let $E_1, ..., E_n$ be n arbitrary events such that event E_i happens with probability p_i . Then,

$$Pr[\text{at least one of } E_1, ..., E_n \text{ happens}] \leq \sum_{i=1}^n p_i.$$

The proof is rudimentary and left to you.

Proof of the Generalization Theorem

Fix any classifier $h \in \mathcal{H}$.

Let S be the training set; set n = |S|. For each $i \in [1, n]$, define $X_i = 1$ if the i-th object in S is incorrectly predicted by h, or 0 otherwise. Hence:

$$err_S(h) = \frac{1}{n} \sum_{i=1}^n X_i.$$

Proof of the Generalization Theorem

Since each object in S is drawn from D independently, for every $i \in [1, n]$:

$$Pr[X_i = 1] = err_{\mathcal{D}}(h).$$

By the Hoeffding bounds, we have:

$$Pr[err_S(h) < err_D(h) - \alpha] \le e^{-2n\alpha^2}$$

which is at most $\delta/|\mathcal{H}|$ by setting $e^{-2n\alpha^2} = \delta/|\mathcal{H}|$, namely

$$\alpha = \sqrt{\frac{\ln(1/\delta) + \ln|H|}{2n}}.$$

We say that h fails if $err_{\mathcal{D}}(h) < err_{\mathcal{D}}(h) - \alpha$.

Y Tao

Proof of the Generalization Theorem

The above analysis shows that each classifier in $\mathcal H$ fails with probability at most $\delta/|\mathcal H|$. By the Union Bound, the probability that at least one classifier in $\mathcal H$ fails is at most δ . Hence, the probability that no classifiers fail is at least $1-\delta$.

Our proof did not use any properties from decision trees. Indeed, the generalization theorem holds for any type of classifiers.