
1/25

Association Rule Mining: Apriori

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Y Tao Association Rule Mining: Apriori

2/25

This lecture we will discuss another fundamental problem in data mining

called association rule mining.

Y Tao Association Rule Mining: Apriori

3/25

Let U be a set of items, referred to as the universal set. The details of
those items are irrelevant to our problem definition.

We define an itemset, denoted as I , to be a subset of U. If |I | = k, then
we refer to I as a k-itemset.

The dataset of the association rule mining problem is a set S of itemsets.
We refer to each of those itemsets as a transaction, and denote it by T .

The support of an itemset I is the number of transactions in S that
contain I , namely:

support(I) =
∣∣{T ∈ S | I ⊆ T}

∣∣

Y Tao Association Rule Mining: Apriori

4/25

Example

U = {beer, bread, butter, milk, potato, onion}
The following table shows a dataset of 5 transactions:

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

If I = {beer , bread}, then support(I) = 4.

Y Tao Association Rule Mining: Apriori

5/25

An association rule R has the form

I1 → I2

where both I1 and I2 are non-empty itemsets satisfying I1 ∩ I2 = ∅. w

The support of R, denoted as sup(R), equals the support of the itemset
I1 ∪ I2.

The confidence of R equals

conf (R) =
support(I1 ∪ I2)

support(I1)
.

Y Tao Association Rule Mining: Apriori

6/25

Example

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

The rule “{beer} → {bread}” has support 4 and confidence 4/5.

“{beer} → {milk}” has support 3 and confidence 3/5.

“{butter , potato} → {milk}” has support 1 and confidence 1.

Y Tao Association Rule Mining: Apriori

7/25

Problem (Association Rule Mining)

Given (i) a set S of transactions, and (ii) two constants minsup and
minconf , we want to find all the association rules R such that

sup(R) ≥ minsup

conf (R) ≥ minconf .

Think:

Why does it make sense to find such association rules?

Why purposes do minsup and minconf serve?

Y Tao Association Rule Mining: Apriori

8/25

Next, we will discuss how to solve the association rule problem. As a
naive solution, we could first enumerate all the possible association rules,
calculate their support and confidence values, and then output the
qualifying ones. However, the method is typically prohibitively slow due
to the large number of possible rules.

Next, we describe an algorithm called Apriori.

Y Tao Association Rule Mining: Apriori

9/25

Let I be an itemset. We say that I is frequent if support(I) ≥ minsup.

Example

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

Assume that minsup = 3. Then:

{beer}, {beer , bread}, and {beer , bread ,milk} are all frequent
itemsets.

{potato}, {potato, onion}, and {beer ,milk , onion} are not frequent
itemsets.

Y Tao Association Rule Mining: Apriori

10/25

If I1 → I2 is an association rule that should be reported, by definition, it
must hold that the itemset I1 ∪ I2 is frequent.

Motivated by this observation, Apriori runs in two steps:

1 (Frequent itemsets computation): Report all the frequent itemsets
of U.

2 (Rule generation): Generate association rules from the above
frequent itemsets.

Next, we will explain each step in turn.

Y Tao Association Rule Mining: Apriori

11/25

The next lemma is straightforward:

Lemma

support(I1 ∪ I2) ≤ support(I1).

The above is known as the anti-monotone property.

Corollary

Suppose that I1 ⊆ I2.

If I2 is frequent, then I1 must be frequent.

If I1 is not frequent, then I2 cannot be frequent.

For example, if {beer , bread} is frequent, then so must be {beer} and

{bread}. Conversely, if {beer} is not frequent, then neither is

{beer , bread}.

Y Tao Association Rule Mining: Apriori

12/25

If the universal set U has n items, then there are 2n − 1 non-empty
itemsets. It is helpful to think of these itemsets in the form of a lattice
that captures the containment relation among these itemsets.

The figure below shows a lattice for n = 4 (assuming U = {a, b, c , d}).
Note that an itemset I1 is connected to an itemset I2 of the upper level if
and only if I1 ⊂ I2.

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Y Tao Association Rule Mining: Apriori

13/25

If we are unlucky, we may have to examine all the itemsets in the lattice.
Fortunately, in reality, Corollary 6 implies a pruning rule for us to
eliminate itemsets.

For example, if we already know that {a} is infrequent, then we can
immediately declare that all of {ab}, {ac}, {ad}, {abc}, {abd}, {acd},
and {abcd} are infrequent.

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Y Tao Association Rule Mining: Apriori

14/25

Given an integer k ∈ [1, n], let Fk denote the set of all frequent
k-itemsets (i.e., itemsets of size k). Then, the entire set of frequent
itemsets equals

F1 ∪ F2 ∪ ... ∪ Fn.

Our earlier discussion indicates that, if Fi = ∅, then Fk is also empty for
any k > i .

Therefore, the Apriori algorithm adopts the following approach to find all
the frequent itemsets:

1 k = 1

2 Find Fk . If Fk = ∅, terminate.

3 k ← k + 1; go to Line 2.

Next, we will clarify the details of Line 2.

Y Tao Association Rule Mining: Apriori

15/25

Finding F1.

This is fairly easy. Suppose that U has n items. Then, there are only n
candidate 1-itemsets; let C1 be the set of all these candidate itemsets.
For each of them, calculate its support, and report the frequent ones.

Example

U = {beer, bread, butter, milk, potato, onion}
minsup = 3

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

C1 = {{beer}, {bread}, {butter}, {milk}, {potato}, {onion}}.
F1 = {{beer}, {bread}, {butter}, {milk}}.

Y Tao Association Rule Mining: Apriori

16/25

Finding Fk (k > 1).

The main strategy is to identify a candidate set Ck of k-itemsets. Then,
we can calculate the support of each such k-itemset, and report the
frequent ones.

The key is to limit the size of Ck . Naively, we may set Ck to include all
the k-itemsets, the number of which, however, is

(
n
k

)
. Even when k is

moderately large, this is a huge number such that it would be
prohibitively expensive to compute the supports of all of them.

Next, we will discuss another method that generates a Ck whose size is

usually much smaller.

Y Tao Association Rule Mining: Apriori

17/25

First, impose an arbitrary total order on the items of U (e.g., the
alphabetic order). Let I = {a1, a2, ..., ak} be a frequent k-itemset (i.e.,
an itemset in Fk). The lemma below is a straightforward corollary of
Corollary 6:

Lemma

{a1, a2, ..., ak−2, ak−1} and {a1, a2, ..., ak−2, ak} are both frequent
(k − 1)-itemsets, namely, both of them need to be in Fk−1.

Next, given a (k − 1)-itemset I = {b1, b2, ..., bk−2, bk−1}, we refer to the

sequence (b1, b2, ..., bk−2) as the prefix of I . Note that the prefix includes

only the first k − 2 items.

Y Tao Association Rule Mining: Apriori

18/25

Motivated by this, Apriori generates Ck from Fk−1 as follows.

1 Sort the itemsets in Fk−1 by prefix. We will refer to the set of
itemsets with the same prefix as a group.

2 Process each group as follows. For each pair of different itemsets
{a1, a2, ..., ak−2, ak−1} and {a1, a2, ..., ak−2, ak} in the group, add to
Ck the itemset {a1, a2, ..., ak}.

Y Tao Association Rule Mining: Apriori

19/25

Example

U = {beer, bread, butter, milk, potato, onion}
minsup = 3

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

We know earlier F1 = {{beer}, {bread}, {butter}, {milk}}.
Hence, C2 = {{beer , bread}, {beer , butter}, {beer ,milk},
{bread , butter}, {bread ,milk}, {butter ,milk}}.
Hence, F2 = {{beer , bread}, {beer , butter}, {beer ,milk},
{bread ,milk}, {butter ,milk}}.

Y Tao Association Rule Mining: Apriori

20/25

Example

U = {beer, bread, butter, milk, potato, onion}
minsup = 3

id items
1 beer, bread
2 beer, butter
3 butter, milk, potato
4 beer, bread, butter, milk, onion
5 beer, bread, butter, milk
6 beer, bread, milk, onion

We know earlier F2 = {{beer , bread}, {beer , butter}, {beer ,milk},
{bread ,milk}, {butter ,milk}}.
Hence, C3 =
{{beer , bread , butter}, {beer , bread ,milk}, {beer , butter ,milk}}.
Hence, F3 = {{beer , bread ,milk}}.
C4 = ∅. Therefore, F4 = ∅.

Y Tao Association Rule Mining: Apriori

21/25

Recall that Apriori runs in two steps:

1 (Frequent itemsets computation): Report all the frequent itemsets
of U.

2 (Rule generation): Generate association rules from the above
frequent itemsets.

Next, we will explain the second step.

Y Tao Association Rule Mining: Apriori

22/25

Let I be a frequent itemset with size k ≥ 2. We first generate candidate
association rules from I as follows. Divide I into disjoint non-empty
itemsets I1, I2, namely, I1 ∪ I2 = I while I1 ∩ I2 = ∅. Then, I1 → I2 is
taken as a candidate association rule.

As a second step, we compute the confidence values of all such candidate
rules, and report those whose confidence values exceed minconf .

Note:

support(I1 → I2) must be at least minsup (why?).

To calculate the confidence of I1 → I2, we need support(I) and
support(I1). Both values are directly available from the first step of
Apriori (finding frequent itemsets), noticing that I1 must be a
frequent itemset.

If I and I ′ are two frequent itemsets, no candidate rule generated
from I can be identical to any candidate rule generated from I ′

(why?).

Y Tao Association Rule Mining: Apriori

23/25

A drawback of the above method is that when k is large, it is quite

expensive to compute the confidence values of 2k − 2 association rules.

Next, we present a heuristic that can often reduce the number in

practice.

Y Tao Association Rule Mining: Apriori

24/25

As before, fix a frequent k-itemset I . Let I1, I2 be disjoint non-empty
subsets of I with I1 ∪ I2 = I . Similarly, let I ′1, I

′
2 also be disjoint non-empty

subsets of I with I ′1 ∪ I ′2 = I . We have:

Lemma

If I1 ⊂ I ′1, then conf (I1 → I2) ≤ conf (I ′1 → I ′2).

We say that I ′1 → I ′2 left-contains I1 → I2.

Proof.

conf (I1 → I2) =
support(I)

support(I1)
≤ support(I)

support(I ′1)
= conf (I ′1 → I ′2).

Example

Suppose that I = {{beer , bread ,milk}}. It must hold that
conf ({beer , bread} → {milk}) ≥ conf ({beer} → {milk , bread}).

Y Tao Association Rule Mining: Apriori

25/25

We can organize all the candidate association rules generated from I in a
lattice. The following figure illustrates the lattice for I = {abcd}. Note
that a rule R1 is connected to another rule R2 of the upper level if and
only if R2 left-contains R1.

∅

a→ bcd b→ acd c→ abd d→ abc

ab→ cd ac→ bd ad→ bc bc→ ad bd→ ac cd→ ab

abc→ d abd→ c acd→ b bcd→ a

Apriori computes the confidence values of the candidate rules by
examining them in the top-down order from the lattice.

Think: if the confidence value of abc → d is below minconf , what other

candidate rules can be pruned?

Y Tao Association Rule Mining: Apriori

