CMSC5724: Exercise List 4

Problem 1. A rectangular classifier h in \mathbb{R}^2 is described by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, h(p) equals 1 if p is covered by r, or -1 otherwise. Give a set of 4 points \mathbb{R}^2 that can be shattered by h.

Problem 2. A rectangular classifier h in \mathbb{R}^2 is described by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, h(p) equals 1 if p is covered by r, or -1 otherwise. Prove: there does not exist any set of 5 points in \mathbb{R}^2 that can be shattered by h.

Problem 3. Let \mathcal{P} be a set of points in \mathbb{R}^d for some integer d > 0. Let \mathcal{H} be a set of classifiers each of which maps \mathbb{R}^d to $\{-1,1\}$. Prove: for any $\mathcal{H}' \subseteq \mathcal{H}$, it holds that $VC\text{-}\dim(\mathcal{P},\mathcal{H}') \leq VC\text{-}\dim(\mathcal{P},\mathcal{H})$.

Problem 4*. In this problem, we will see that deciding *whether* a set of points is linearly separable can be cast as an instance of linear programming.

In the *linear programming* (LP) problem, we are given n constraints of the form:

$$\alpha_i \cdot x > 0$$

where $i \in [1, n]$, α_i is a constant d-dimensional vector (i.e., α_i is explicitly given), and x is a d-dimensional vector we search for. Let β be another constant d-dimensional vector. Denote by S the set of vectors x satisfying all the n constraints. The objective is to

- either find the best $x \in S$ that maximizes the *objective function* $\beta \cdot x$ in this case we say that the LP instance is *feasible*;
- \bullet or declare that S is empty in this case we say that the instance is *infeasible*.

Suppose that we have an algorithm \mathcal{A} for solving LP in at most f(n,d) time. Let P be a set of n points in \mathbb{R}^d , each given a label that is either 1 or -1. Explain how to use \mathcal{A} to decide in O(nd) + f(n, d+1) time whether P is linearly separable, i.e., whether there exists a vector \boldsymbol{w} such that:

- $\boldsymbol{w} \cdot \boldsymbol{p} > 0$ for each $\boldsymbol{p} \in P$ of label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} < 0$ for each $\boldsymbol{p} \in P$ of label -1.

Note that the inequalities in the above two bullets are strict, while the inequality in LP involves equality.