k-Selection

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao k-Selection

(The k-Selection Problem)

Problem: You are given a set S of n integers in an array, and also
an integer k € [1, n]. Design an algorithm to find the k-th smallest
integer of S.

For example, suppose that S = (53,92, 85,23, 35,12,68,74), and k = 3.
You should output 35.

This problem can be easily settled in O(nlog n) time by sorting. Next, we
will solve it in O(n) expected time with randomization.

Yufei Tao k-Selection

To illustrate the idea behind our algorithm, suppose that we pick an
arbitrary element (say the first) v of S.

DEEEEEEEEEEEEEEE

Move elements around so that those smaller than v are placed before v,
and those larger are placed after v. This requires only O(n) time (no
sorting required).

T |

- - >
y elements

x elements

@ If x =k — 1, done—v is what we are looking for.

@ If x < k —1, recurse by performing (k — (x 4 1))-selection on the y
elements to the right of v.

@ If x > k — 1, recurse by performing k-selection on the x elements to
the left of v.

Yufei Tao k-Selection

Obstacle: x or y can be very small (0 if we are unlucky) such that we
can throw away only few elements before recursion!

‘ <v “ >v ‘

<« -—
r elements y elements

Wish: Make x > n/3 and y > n/3.
Anecdote: Randomly select v from the whole array! Wish comes true
with probability 1/3!

New obstacle: Would still fail with probability 2/3.
New anecdote: Choose another v if we fail—3 repeats in expectation!

Yufei Tao k-Selection

Algorithm

The rank of an integer v in S is the number of elements in S
smaller than or equal to v.

For example, suppose that S = (53,92, 85,23, 35,12, 68,74). Then, the
rank of 53 is 4, and that of 12 is 1.

Finding the rank of v in S (stored in an array) takes only O(|S]) time.

Yufei Tao k-Selection

© Randomly pick an integer v from S.

© Get the rank of v—let it be r.

© If risnotin [n/3,2n/3], repeat from Step 1.
@ Otherwise:

4.1 If k = r, return v.

4.2 If k < r, produce an array A containing all the integers of S
strictly smaller than v. Recurse on A by looking for the k-th
smallest element in A.

4.3 If k > r, produce an array A containing all the integers of S
strictly larger than v. Recurse on A by looking for the
(k — r)-th smallest element in A.

Yufei Tao k-Selection

Consider that we want to find the 10th smallest element from a set S of
12 elements:

| 17] 26] 38| 28] 41[72[83]88] 5| 9 | 1235]

Suppose that the v we randomly choose is 12, whose rank is 3. This is
not in the range of [4, 8]

So we repeat by randomly choosing another v from S. Suppose that this
time v = 83, whose rank is 11. This is not good either.

Repeat by choosing yet another v, say, 35, whose rank is 7. We generate
an array with only the elements larger than 35:

[2]

Recurse by finding the 3rd smallest element in this array.

Yufei Tao k-Selection

Cost Analysis

Step 1 (on Slide 6) takes O(1) time.
Step 2 takes O(n) time.

How many times do we have to repeat the above two steps?
With a probability 1/3, we can proceed to Step 3 = need to repeat only
3 times in expectation!

When we are at Step 3, A has at most [2n/3] elements left.

Yufei Tao k-Selection

Cost Analysis

Let f(n) be the expected running time of our algorithm on an array of
size n.

We know from the earlier analysis:

Solving the recurrence gives f(n) = O(n) (master theorem).

Yufei Tao k-Selection

It is worth mentioning that the k-selection problem can actually
be solved in O(n) time deterministically. However, the algorithm
is much more complicated—this demonstrates again the power of
randomization.

Yufei Tao k-Selection

