CSCI3160: Regular Exercise Set 8

Prepared by Yufei Tao

Problem 1. Let P be a set of n integer pairs, each of which has the form (id, key). It is guaranteed
that no two pairs have the same id (but there may be pairs having the same key). Describe a
structure of O(n) space to support each of the following operations in O(logn) time:

e Insert(i,k): add a pair (i, k) to P if P does not already have a pair with id i;

e DecreaseKey(i, k): if P does not have any pair with id 4, this operation has no effects.
Otherwise, suppose that the pair is (i, k'); the operation replaces the key &’ of the pair with &
if k <k;

e DeleteMin: Remove from P the pair with the smalelst key.

Solution. Build two binary search trees (BST). The first one T} is created on the id fields of the
pairs in P, while the second one T is created on their key fields. The space consumption is clearly
O(n). The three operations can be supported as follows:

o Insert(i, k): first check whether the id ¢ already exists in P; this can be done in O(logn) time
using 7. If not, then insert the pair (¢, k) to both T} and 7% in O(logn) time.

e DecreaseKey (i, k): first check whether the id i already exists. If not, the operation finishes
with no more actions. Otherwise, fetch from T the pair (i,k") in P, which takes O(logn)
time. If & < &K/, remove (i, k") from both T} and T5, and then insert the pair (i, k) into both
trees; these deletions and insertions take O(logn) time in total.

e DeleteMin: Use T3 to find the pair — say (i, k) — with the smallest key in O(logn) time.
Then, delete the pair from both trees in O(logn) time.

Problem 2. Describe how to implement Dijkstra’s algorithm on a graph G = (V, E) in O((|V| +
|E|) - log|V]) time.

Solution. Recall that the algorithm maintains (i) a set S of vertices at all times, and (ii) an integer
value dist(v) for each vertex v € S. Define P to be the set of (v, dist(v)) pairs (one for each v € §).
We need the following operations on P:

e Insert: add a pair (v, dist(v)) to P.

e DecreaseKey: given a vertex v € S and an integer x < dist(v), update the pair (v, dist(v)) to
(v,z) (and thereby, setting dist(v) = z in P).

e DeleteMin: Remove from P the pair (v, dist(v)) with the smalelst dist(v).

We can store P in a data structure of Problem 1 which supports all operations in O(log|V]) time.

In addition to the above structure, we store all the dist(v) values in an array A of length |V, so
that using the id of a vertex v, we can find its dist(v) in constant time.

Now we can implement the algorithm as follows. Initially, insert only (s,0) into P, where s is
the source vertex. Also, in A, set all the values to oo, except the cell of s which equals 0.

Then, we repeat the following until P is empty:



e Perform a DeleteMin to obtain a pair (v, dist(v

))-
(

e For every outgoing edge (v, u) of v, compare dist(u) to dist(v)+w(u,v). If the latter is smaller,
perform a DecreaseKey on vertex u to set dist(u) = dist(v) + w(u,v), and update the cell of
uw in A with this value as well.

Problem 3. In the lecture we proved the correctness of Dijkstra’s algorithm. Point out the place
in the proof that requires the assumption that all the weights are non-negative.

Solution. The proof holds only if dist(vpeq) < dist(u) (check the proof in the lecture notes for the
meanings of vy,g and dist(u)). This no longer holds if edges can take negative weights.

Problem 4 (SSSP with Unit Weights). Let us simplify the SSSP problem by requiring that
all the edges in the input directed graph G = (V, E) take the same weight, which we assume to be
1. Give an algorithm that solves the SSSP problem in O(|V| + |E]) time.

(Remark: you can of course still use Dijkstra’s algorithm, but as shown earlier, its complexity is
O((JV] + |E])log|V]). You mission here is to improve the time complexity to O(|V |+ |E]))

Solution. Let s be the source vertex. We perform a breadth first search (BFS) to obtain the
so-called BFS-tree as follows:

algorithm BFS
set parent(v) = () for every v € V
color all vertices in V' white
initialize an empty queue @
insert s into @, set parent(s) = nil, and color s white
while () is not empty

remove the first vertex u in Q

for every outgoing edge (u,v) of u

if v is black then
set parent(v) = w, insert v into @, and color v black
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T is the tree that is formed by the parent function (i.e., the parent node of v in T is parent(v)).
Note that s is the root of T'. The shortest path from s to any vertex v is the only path from s to v
in T

Problem 5*. In the lecture, we proved the correctness of Dijkstra’s algorithm in the scenario
where all the edges have positive weights. Prove: the algorithm is still correct if we allow edges to
take non-negative weights (i.e., zero weights are allowed).

Solution. As in the proof in our lecture notes, we will prove that dist(v) must be spdist(v) when
v is to be removed from S. Again we will do so by induction on the order that the vertices are
removed. The base step, which corresponds to removing the source vertex s, is obviously correct.
Next, assuming correctness on all the vertices already removed, we will prove that the statement
holds on the next vertex v to be removed.

Let m be an arbitrary shortest path from s to v. Identify the last vertex w on m such that
spdist(u) = spdist(v). In other words, all the edges on 7 between u and v have weight 0. Let 7’ be
the prefix of 7 that ends at u (i.e., 7’ is a sequence of edges that is the same as 7, except that 7/
does not grow beyond u).



Claim 1: When v is to be removed from S, all the vertices on 7’ except possibly u must
have been removed from S.

This claim can be established using the same argument as in our lecture notes (consider the
predecessor of u, which must have been removed, and then discuss what happens when the algorithm
relaxed the edge from that predecessor to u).

Now let us focus on the path 7 that is the sequence of edges from u to v on 7. Define v’ as the
first vertex on 7 that has not been removed from S. Note that v’ is well defined because v itself
(which is the last vertex on 7) is still in S at this moment.

’Claim 2: When v is to be removed from S, dist(u') = spdist(u’).

This claim again can be established using the same argument as in our lecture notes.

It now follows that dist(v) < dist(u') = spdist(u') = spdist(v), where the first inequality used
the fact that the algorithm is about to remove v from S.



