
CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let G = (V,E) be a connected undirected graph where every edge carries a positive
integer weight. Divide V into arbitrary disjoint subsets V1, V2, ..., Vt for some t ≥ 2, namely,
Vi ∩ Vj = ∅ for any 1 ≤ i < j ≤ t, and

⋃t
i=1 Vi = V . Define an edge {u, v} in E a cross edge if u

and v are not in the same subset (i.e., there is no i ∈ [1, t] satisfying u ∈ Vi and v ∈ Vi). Prove: the
lightest cross edge must belong to a minimum spanning tree (MST).

Solution. Immediate from the “cut property” proved in the Special Exercise List 4. Nevertheless,
we give the whole proof below.

Let e = {u, v} be the lightest cross edge. Without loss of generality, suppose that u ∈ Vi and
j ∈ Vj for some distinct i, j ∈ [1, t]. Consider any MST T that does not contain e. We now add e to
T to produce a cycle C. Walk on C by starting from u, and passing v as the next vertex, but stop
as soon as we have crossed an edge e′ that brings us back to a vertex on C that belongs to Vi. The
edge e′ must be a cross edge, and hence, must be at least as heavy as e. Deleting e′ gives an MST
that contains e.

Problem 2* (Kruskal’s Algorithm). Let G = (V,E) be a connected undirected graph where
every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G
correctly:

algorithm
1. S = ∅
2. while |S| < |V | − 1
3. find the lightest edge e ∈ E that does not introduce any cycle with the edges in S
4. add e to S
5. the edges in S now form an MST

Solution. Set n = |V | − 1. Let e1, ..., en−1 be the edges picked by the algorithm. We claim that
for any k ∈ [1, n− 1], there is an MST that uses e1, ..., ek. The lemma then follows from the claim
at k = n − 1. The base case of k = 1 is obvious (we proved this in the class). Next, assuming
correctness at k = x for some integer x ≥ 1, we will prove the claim for k = x+ 1.

Let T be an MST that includes e1, ..., ex. The existence of T is promised by the inductive
assumption. If T contains ex+1, we are done; the rest of the proof will focus on the case that ex+1 is
not in T . Consider the graph G′ = (V, {e1, ..., ex}). Denote by G1, ..., Gt the connected components
(CC) of G′. Let us call an edge e ∈ E a cross edge if it connects two vertices from different CCs.

Since ex+1 does not introduce any cycle with e1, ..., ex, we know that ex+1 must be a cross edge.
Now add ex+1 into T , which gives rise to a cycle. By the same argument as in the solution to
Problem 1, we know that the cycle must contain another cross edge e′. By the way ex+1 is chosen by
the algorithm, we assert that the weight of ex+1 cannot be heavier than that of e′. Thus removing
e′ yields another MST; and this MST contains e1, ..., ex+1, as desired.

Problem 3. Consider Σ as an alphabet. Recall that a code tree on Σ as a binary tree T satisfying
both conditions below:

• C1 : Every leaf node of T is labeled with a distinct letter in Σ; conversely, every letter in Σ is
the label of a distinct leaf node in T .

1

• C2 : For every internal node of T , its left edge (if exists) is labeled with 0, and its right edge
(if exists) with 1.

Define an encoding as a function f that maps each letter σ ∈ Σ to a non-empty bit string, which is
called the codeword of σ. T produces an encoding where the code word of a letter σ ∈ Σ can be
obtained by concatenating the bit labels of the edges on the path from the root to the leaf σ.

Prove:

• The encoding produces by a code tree T is a prefix code.

• Every prefix code is produced by a code tree T .

Solution. Proof of the first bullet: Consider any distinct leaf nodes σ1, σ2. Let u be their lowest
common ancestor. That the bit strings of σ1, σ2 are different follows from the fact that the two
edges of u carry different labels.

Proof of the second bullet: Let f be the encoding that corresponds to the prefix code that we
are given. Define S = {f(σ) | σ ∈ Σ}, namely, S collects the codewords of all the letters in Σ. Grow
a binary tree T as follows. At the beginning, T has a single leaf. Then, for each letter σ ∈ Σ, we
add some nodes and edges to T (if necessary) as follows:

• Initially, set u to the root of T .

• Repeat the following until u is a leaf node:

– Set ` to the level of u.

– Descend to the left (or right) child v of u if the `-th bit of f(σ) is 0 (or 1, resp.). If v
does not exist, create it in T , and label its edge with u using the bit 0 (or 1, resp.).

– Set u to v.

• Mark the leaf node u with the letter σ.

The final T is a code tree of f .

Problem 4. Consider the alphabet Σ = {1, 2, ..., n} for some integer n ≥ 1. Suppose that the
frequency of i is strictly higher than the frequency of i + 1, for any i ∈ [1, n − 1]. Prove: in an
optimal prefix code, for any i ∈ [1, n− 1], the codeword of i cannot be longer than that of i+ 1.

Solution. If this is not true, then swapping the codewords of i and i+ 1 reduces the average length.

2

