CSCI3160: Regular Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let G = (V, E) be a connected undirected graph where every edge carries a positive
integer weight. Divide V into arbitrary disjoint subsets Vi, Va,...,V; for some ¢t > 2, namely,
VinV; =0 forany 1 <i < j <t and |Ji_, Vi = V. Define an edge {u,v} in E a cross edge if u
and v are not in the same subset (i.e., there is no i € [1,] satisfying v € V; and v € V;). Prove: the
lightest cross edge must belong to a minimum spanning tree (MST).

Solution. Immediate from the “cut property” proved in the Special Exercise List 4. Nevertheless,
we give the whole proof below.

Let e = {u, v} be the lightest cross edge. Without loss of generality, suppose that u € V; and
J € Vj for some distinct 4, j € [1,t]. Consider any MST T that does not contain e. We now add e to
T to produce a cycle C. Walk on C by starting from wu, and passing v as the next vertex, but stop
as soon as we have crossed an edge €’ that brings us back to a vertex on C that belongs to V;. The
edge ¢ must be a cross edge, and hence, must be at least as heavy as e. Deleting €’ gives an MST
that contains e.

Problem 2* (Kruskal’s Algorithm). Let G = (V, E) be a connected undirected graph where
every edge carries a positive integer weight. Prove that the following algorithm finds an MST of G
correctly:

algorithm

1. S=10

2. while |S| < |V| -1

3. find the lightest edge e € E that does not introduce any cycle with the edges in S
4. add e to S

5. the edges in S now form an MST

Solution. Set n = |V| — 1. Let ey, ...,e,—1 be the edges picked by the algorithm. We claim that
for any k € [1,n — 1], there is an MST that uses ey, ..., ex. The lemma then follows from the claim
at k = n — 1. The base case of k = 1 is obvious (we proved this in the class). Next, assuming
correctness at k = x for some integer x > 1, we will prove the claim for k =z + 1.

Let T be an MST that includes ey, ...,e;. The existence of T is promised by the inductive
assumption. If T contains e, 1, we are done; the rest of the proof will focus on the case that e, is
not in 7. Consider the graph G’ = (V,{e1, ...,e;}). Denote by G, ..., G¢ the connected components
(CC) of G'. Let us call an edge e € E a cross edge if it connects two vertices from different CCs.

Since e;41 does not introduce any cycle with ey, ..., e,, we know that e;41 must be a cross edge.
Now add e;41 into T', which gives rise to a cycle. By the same argument as in the solution to
Problem 1, we know that the cycle must contain another cross edge e’. By the way e, is chosen by
the algorithm, we assert that the weight of e;11 cannot be heavier than that of ¢/. Thus removing
¢’ yields another MST; and this MST contains ey, ..., e,+1, as desired.

Problem 3. Consider ¥ as an alphabet. Recall that a code tree on ¥ as a binary tree T satisfying
both conditions below:

e (1 : Every leaf node of T is labeled with a distinct letter in ; conversely, every letter in ¥ is
the label of a distinct leaf node in T'.

e (5 : For every internal node of T, its left edge (if exists) is labeled with 0, and its right edge
(if exists) with 1.

Define an encoding as a function f that maps each letter o € 3 to a non-empty bit string, which is

called the codeword of o. T produces an encoding where the code word of a letter o € ¥ can be

obtained by concatenating the bit labels of the edges on the path from the root to the leaf o.
Prove:

e The encoding produces by a code tree T' is a prefix code.
e Every prefix code is produced by a code tree T'.
Solution. Proof of the first bullet: Consider any distinct leaf nodes o1, 02. Let u be their lowest

common ancestor. That the bit strings of o1, 09 are different follows from the fact that the two
edges of u carry different labels.

Proof of the second bullet: Let f be the encoding that corresponds to the prefix code that we
are given. Define S = {f(o) | 0 € £}, namely, S collects the codewords of all the letters in ¥. Grow
a binary tree T as follows. At the beginning, T has a single leaf. Then, for each letter o € X, we
add some nodes and edges to T' (if necessary) as follows:

e Initially, set u to the root of T.
e Repeat the following until u is a leaf node:

— Set ¢ to the level of u.

— Descend to the left (or right) child v of u if the ¢-th bit of f(o) is 0 (or 1, resp.). If v
does not exist, create it in 7', and label its edge with u using the bit 0 (or 1, resp.).

— Set u to v.
e Mark the leaf node u with the letter o.
The final T is a code tree of f.

Problem 4. Consider the alphabet ¥ = {1,2,...,n} for some integer n > 1. Suppose that the
frequency of i is strictly higher than the frequency of i + 1, for any i € [1,n — 1]. Prove: in an
optimal prefix code, for any i € [1,n — 1], the codeword of i cannot be longer than that of i + 1.

Solution. If this is not true, then swapping the codewords of 7 and 7 + 1 reduces the average length.

