
CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S1

and S2 be two disjoint sets of n integers. Assume that S1 is stored in an array A1, and S2 in an
array A2. Both A1 and A2 are sorted in ascending order. Design an algorithm to find the number
of such pairs (a, b) satisfying all of the following conditions: (i) a ∈ S1, (ii) b ∈ S2, and (iii) a > b.
Your algorithm must finish in O(n) time (we gave an O(n log n)-time algorithm in the class).

Solution. Merge A1 and A2 into one sorted list A, which takes O(n) time. Scan the elements of A
in ascending order. In the meantime, maintain the number n2 of elements that (i) originate from
A2, and (ii) have already been scanned so far: this can be done by setting n2 to 0 at the beginning,
and increment it each time an element originating from A2 is scanned. Furthermore, also maintain
a counter c as follows: c = 0 at the beginning; every time an element a originating from A1 is seen,
c is increased by the current value of n2. The final c at the end of the algorithm is the answer we
are looking for.

Problem 2. Give an O(n log n)-time algorithm to solve the dominance counting problem discussed
in the class. (Hint: Require the n/2 points on each of side of the split line to be sorted after
recursion.)

Solution. Let P be the input set of points. Recall that, as discussed in the class, our algorithm
divides P into two halves P1 and P2 using a vertical line `, and then recurse on P1 and P2 respec-
tively. The first change we make to the algorithm is to ensure that, when the recursion on P1 and
P2 ends, the points of P1 and P2 have been sorted by y-coordinate. Now it remains to find, for
each point p2 ∈ P2, the number of points p1 ∈ P1 that are dominated by p2. Next we show that
this can be done in O(n) time, which makes the total running time O(n log n).

In O(n) time, merge P1 and P2 into one sorted list P , where the points are sorted in ascending
order by y-coordinate. Scan P . In the meantime, maintain the number n1 of points that (i)
originate from P1, and (ii) have already been scanned so far. Every time a point p2 originating
from P2 is seen, the number of points p1 ∈ P1 dominated by p2 is precisely the current value of n1.

Problem 3 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily
sorted). Each integer in A may be positive or negative. Given i, j satisfying 1 ≤ i ≤ j ≤ n,
define sub-array A[i : j] as the sequence (A[i], A[i + 1], ..., A[j]), and the weight of A[i : j] as
A[i] + A[i + 1] + ... + A[j]. For example, consider A = (13,−3,−25, 20,−3,−16,−23, 18); A[1 : 4]
has weight 5, while A[2 : 4] has weight −8.

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays A[i : j]
with j = n. Your algorithm must finish in O(n) time.

2. Give an algorithm to find a sub-array with the largest weight in O(n log n) time (among all
the possible sub-arrays).

Solution. Subproblem 1: Scan the elements of A from A[n] to A[1]. At any time, maintain the
sum s of the elements already scanned: at the beginning s = 0; after scanning an element A[i], add

1



A[i] to s. Every time we finish doing so for element A[i], the current value s is precisely the weight
of A[i : n]. In this way, we obtain the weights of all sub-arrays A[n : n], A[n − 1 : n], ..., A[1 : n]
(in this order) in O(n) time. The maximum weight can then be found easily.

Subproblem 2: Break A into two halves: array A1 which contains the first dn/2e elements, and
array A2 which contains the rest. Recursively, find the sub-array of A1 with the largest weight, and
then the sub-array of A2 with the largest weight. It remains to consider the “crossing” sub-arrays
A[i : j] where i ≤ dn/2e and j > dn/2e. In particular, we want to find the “best” crossing sub-array,
i.e., the one with the maximum weight. Then, the sub-array to output can be decided easily from
the three sub-arrays aforementioned.

We say that a sub-array A1[i : j] is right grounded if j = dn/2e, and a sub-array A2[i : j] is
left grounded if i = 1. A crucial observation is that the “best” crossing sub-array must be the
concatenation of

• the right grounded sub-array in A1 with the maximum weight, and

• the left grounded sub-array in A2 with the maximum weight.

From Subproblem 1, we know that each of the above two grounded sub-arrays can be found in
O(n) time.

Therefore, if f(n) is the time of solving the problem on an array of length n, it holds that
f(n) ≤ 2 · f(dn/2e) + O(n), which gives f(n) = O(n log n).

Problem 4. In the class, we explained how to multiply two n× n matrices in O(n2.81) time when
n is a power of 2. Explain how to ensure the running time for any value of n.

Solution. If n is not a power of 2, let m be the smallest power of 2 that is larger than n. If A,B
are the n × n input matrices, obtain an m × m matrix A′ by padding m − n dummy rows and
columns to A containing only 0 values, and similarly, an m×m matrix B′ from B. Calculate A′B′

in O(m2.81) = O((2n)2.81) = O(n2.81) time. Then, the matrix AB can be obtained by discarding
the last m− n rows and columns from the matrix A′B′.

2


