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Abstract—In modern VLSI design flow, subresolution assist
feature (SRAF) insertion is one of the resolution enhancement
techniques (RETs) to improve chip manufacturing yield. With
aggressive feature size continuously scaling down, layout feature
learning becomes extremely critical. In this article, for the first
time, we enhance conventional manual feature construction, by
proposing a supervised online dictionary learning algorithm for
simultaneous feature extraction and dimensionality reduction. By
taking advantage of label information, the proposed dictionary
learning framework can discriminatively and accurately repre-
sent the input data. We further consider SRAF design rules in a
global view, and design two integer linear programming models
in the post-processing stage of SRAF insertion framework. The
experimental results demonstrate that, compared with a state-of-
the-art SRAF insertion tool, our framework not only boosts the
performance of the machine learning model but also improves
the mask optimization quality in terms of edge placement error
(EPE) and process variation (PV) band area.

Index Terms—Design for manufacturability, machine learn-
ing, subresolution assist feature (SRAF) insertion, supervised
dictionary learning.

I. INTRODUCTION

AS FEATURE size of semiconductors enters nanometer
era, lithographic process variations (PVs) are emerging

as more severe issues in chip manufacturing process. That is,
these PVs may result in manufacturing defects and a decrease
of yield. Besides some design for manufacturability (DFM)
approaches, such as multiple patterning and litho-friendly lay-
out design [1], [2], a de facto solution alleviating variations
is mask optimization through various resolution enhancement
techniques (RETs) (e.g., [3], and [4]). Optical proximity cor-
rection (OPC) is the most successful representative strategy
among numerous RETs, which aims at compensating lithog-
raphy proximity effects by correcting mask pattern shapes and
inserting assist features.

Although conventional OPC can size the mask to give the
correct critical dimension (CD) on the wafer, it cannot make
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Fig. 1. (a) Printing with OPC only (2688 nm2 PV band area). (b) Printing
with both OPC and SRAF (2318 nm2 PV band area).

the isolated target pattern become dense [5]. As a result, sub-
resolution assist feature (SRAF) [6] insertion was proposed.
Without printing SRAF patterns themselves, the small SRAF
patterns can transfer light to the positions of target patterns,
and therefore SRAFs are able to improve the robustness of
the target patterns under different lithographic variations. A
lithographic simulation example demonstrating the benefit of
SRAF insertion is illustrated in Fig. 1. Here, PV band [7]
(i.e., yellow circuit) area is applied to measure the performance
of lithographic process window. As a matter of fact, the smaller
area of the PV band, the better printing performance. In
Fig. 1(a), only OPC is conducted to improve the printability of
the target pattern, while in Fig. 1(b) both SRAF insertion and
OPC are applied. We can see that, through SRAF insertion,
the PV band area of the printed target pattern is effectively
reduced from 2688 nm2 as in Fig. 1(a) to 2318 nm2 as in
Fig. 1(b).

There is a wealth of literature on the topic of SRAF inser-
tion for mask optimization, which can be roughly divided into
three categories: 1) rule-based approach [8]; 2) model-based
approach [9]; and 3) machine learning-based approach [7].
Rule-based approach is able to achieve high performance
on simple designs, but it cannot handle complicated tar-
get patterns. Although model-based approach has a bet-
ter performance, it is unfortunately very time consuming.
Recently, Xu et al. [7] investigated an SRAF insertion frame-
work based on machine learning techniques. After trained on
the training data set, the machine learning model draws infer-
ences that can guide SRAF insertion on testing data. However,
on account of coarse feature extraction techniques and lack of
a global view of SRAF designs, the lithographic simulation
results may not be good enough.

In a learning-based SRAF insertion flow, first, features are
extracted from raw layout clips. One of the key takeaways
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of previous arts is the importance of features extracted from
clips that leverage prior gained knowledge to achieve expected
results. Namely, with more representative, generalized and
discriminative layout features, the calibrated model can per-
form better. In this article, we argue that the label information
utilized in learning stage can be further imposed in fea-
ture extraction stage, which in turn will benefit the learning
counterpart. In accordance with this argument, we propose
a supervised online dictionary learning (SODL) algorithm,
which converts features from a high-dimension space into a
low-dimension space with label information integrated into
the feature representations at the same time. To the best of
our knowledge, this is the first layout feature extraction work
seamlessly combining with label information. There is no prior
art in applying the dictionary learning techniques or further
supervised dictionary approaches into SRAF insertion issue.
Our main contributions are listed as follows.

1) Leverage SODL algorithm to handle a large amount of
layout patterns.

2) Our proposed feature is more discriminative and rep-
resentative, and is embedded into SRAF insertion
framework.

3) The SRAF insertion with design rules is modeled as an
integer linear programming (ILP) problem, and two ILP
models are proposed.

4) The experimental results show that our method not only
boosts the performance of the machine learning model,
but also improves the mask optimization quality.

The rest of this article is organized as follows. Section II
introduces some preliminaries on metrics, problem formula-
tion in this article and illustrates the whole working flow
of our framework to insert SRAFs. Section III describes the
specific feature extraction method, and our SODL algorithm.
Section IV reveals two ILP models in post-processing stage.
Section V presents the experiment results, followed by the
conclusion in Section VI.

II. PRELIMINARY

A. Problem Formulation

Given a machine learning model, F1-score is used to
measure its accuracy. Specifically, the higher, the better. In
addition, we employ PV band area and edge placement error
(EPE) to quantify lithographic simulation results.

Definition 1 (F1-Score [10]): F1 score is the harmonic
mean of two metrics: 1) precision and 2) recall. Precision is
the number of true positive results divided by the number of
all positive results, while recall is the ratio between number of
true positive results and the number of positive results should
be returned

F1 = 2× precision× recall

precision+ recall
. (1)

Definition 2 (PV Band): Given a lithography simulation
contours at a set of process conditions, the PV band is the
area between the outer contour and inner contour.

Definition 3 (EPE [7]): Given a lithography simulation
contour at the nominal condition, the EPE is defined as the dis-
placement between the target pattern contour and the nominal
contour.

Fig. 2. Proposed SRAF generation flow.

Based on the above metrics, we define the SRAF insertion
problem as follows.

Problem 1 (SRAF Insertion): Given a training set of lay-
out clips and specific SRAF design rules, the objective of
SRAF insertion is to place SRAFs in the testing set of layout
clips such that the corresponding PV band and the EPE are
minimized.

B. Overall Flow

The overall flow of our proposed SRAF insertion is shown
in Fig. 2, which consists of two stages: 1) feature extraction
and 2) SRAF insertion. In the feature extraction stage, after
feature extraction via concentric circle area sampling (CCAS),
we propose supervised feature revision, namely, mapping fea-
tures into a discriminative low-dimension space. A dictionary
consists of atoms which are the representatives of the origi-
nal features. Sparsely encoded over a well-trained dictionary,
the original features are described as combinations of atoms.
Due to space transformation, the new features (i.e., sparse
codes) are more abstract and discriminative with negligible
information loss for classification. Therefore, proposed super-
vised feature revision is expected to avoid over-fitting of a
machine learning model. In the second stage, based on the
predictions inferred by learning model, SRAF insertion can be
treated as a mathematical optimization problem accompanied
by taking design rules into consideration.

III. FEATURE EXTRACTION

In this section, we first introduce the CCAS feature extrac-
tion method, and supervised feature revision. By the end, we
give the details about our SODL algorithm and corresponding
analysis.

A. CCAS Feature Extraction

With considering concentric propagation of diffracted light
from mask patterns, recently proposed CCAS [11] layout
feature is used in SRAF generation domain.

In SRAF insertion, the raw training data set is made up
of a set of layout clips which include a set of target patterns
and model-based SRAFs. Each layout clip is put on a 2-D grid
plane with a specific grid size so that real training samples can
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(a) (b)

Fig. 3. (a) SRAF label. (b) CCAS for feature extraction in machine learning
model-based SRAF generation.

be extracted via CCAS method at each grid. For every sample,
according to the model-based SRAFs, the corresponding label
is either “1” or “0.” As Fig. 3(a) illustrates, “1” means inserting
an SRAF at this grid, while “0” indicates there is no assist
feature. Fig. 3(b) shows the CCAS feature extraction method.

However, since adjacent circles contain similar information,
the CCAS feature has much redundancy. In fact, the redun-
dancy will hinder the fitting of a machine learning model.

B. Supervised Feature Revision

With CCAS features as inputs, the dictionary learning
model is expected to output the discriminative feature of
low-dimension. In the topic of data representation [12], a self-
adaptive dictionary learning model can sparsely and accurately
represent data as linear combinations of atoms (i.e., columns)
from a dictionary matrix. This model reveals the intrinsic
characteristics of raw data.

In recent arts, sparse decomposition and dictionary con-
struction are coupled in a self-adaptive dictionary learning
framework. As a result, the framework can be modeled as an
unconstrained optimization problem. The joint objective func-
tion of a self-adaptive dictionary model for feature revision
problem is proposed as

min
x,D

1

N

N∑

t=1

{
1

2

∥∥yt − Dxt
∥∥2

2 + λ‖xt‖p
}

(2)

where yt ∈ R
n is an input CCAS feature vector, and

D = {dj}sj=1, dj ∈ R
n represents the dictionary made up of

atoms to encode input features. xt ∈ R
s denotes sparse codes

(i.e., sparse decomposition coefficients) with p referring to the
type of norm. Meanwhile, N is the total number of training
data vectors in memory. The above equation, illustrated in
Fig. 4, consists of a series of reconstruction error, ‖yt−Dxt‖22,
and a regularization term ‖xt‖p. In Fig. 4, every grid represents
a numerical value, and dark grids of xt indicate zero. It can be
seen that the motivation of dictionary learning is to sparsely
encode input CCAS features over a well-trained dictionary.

1) Latent Supervised Information: However, from (2), it is
easy to discover that the main optimization goal is minimizing
the reconstruction error in a mean squared sense, which may
not be compatible with the goal of classification. Therefore,
we try to explore the latent label information, and then propose
our joint objective function as (3). As aforementioned, a label
indicates whether a grid is occupied with an SRAF or not.

Fig. 4. Overview of dictionary learning.

Here, an assumption has been made in advance that every
atom is associated with a particular label. It is true because
in initialization, atoms are trained by CCAS features for each
class

min
x,D,A

1

N

N∑

t=1

{
1

2

∥∥∥∥
(

y�t ,
√

αq�t
)� −

(
D√
αA

)
xt

∥∥∥∥
2

2
+ λ‖xt‖p

}
.

(3)

In (3), α is a hyper-parameter balancing the contribution of
each part to reconstruction error. qt ∈ R

s is defined as discrim-
inative sparse code of t-th input feature vector. Thus, A ∈ R

s×s

transforms original sparse code xt into discriminative sparse
code. Filled with constants (“0.0” or “1.0”), qt reflects the
categorical relationship between corresponding atoms and t-th
input. For example, “1.0” means the input shares the same
label with the corresponding atom, while “0.0” vice versa.
Given the input and the dictionary D, it is obvious that qt is
not undetermined. On the contrary, it has some fixed types and
once an input is given, one type is selected.

For example, assume D = {d1, d2, d3, d4} with d1 and d2
from class 1, d3 and d4 from class 2, then qt for the corre-
sponding input yt is supposed to be either (1.0, 1.0, 0.0, 0.0)�
or (0.0, 0.0, 1.0, 1.0)�. For further explanation, we merge
different types of qt as a Q matrix

Q = (q1, q2
) =

⎛

⎜⎜⎝

1.0 0.0
1.0 0.0
0.0 1.0
0.0 1.0

⎞

⎟⎟⎠ (4)

where (1.0, 1.0, 0.0, 0.0)� means input sample shares the
same label with d1 and d2, and (0.0, 0.0, 1.0, 1.0)� indicates
that the input, d3 and d4 are from the same class.

To illustrate physical meaning of (3) clearly, we can also
rewrite it via splitting the reconstruction term into two terms
within l2-norm as

min
x,D,A

1

N

N∑

t=1

{
1

2

∥∥yt − Dxt
∥∥2

2 +
α

2

∥∥qt − Axt
∥∥2

2 + λ‖xt‖p
}
. (5)

The first term ‖yt − Dxt‖22 is still the reconstruction error term.
The second term ‖qt − Axt‖22 represents discriminative error,
which imposes a constraint on the approximation of qt. As a
result, the input CCAS features from same class share quite
similar representations.

2) Direct Supervised Information: Since the latent class
information has been exploited, the label information can also
be directly harnessed. After adding the prediction error term
into initial objective function (3), we propose our final joint
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Fig. 5. Illustration of supervised dictionary learning.

objective function as

min
x,D,A,W

1

N

N∑

t=1

⎧
⎪⎪⎨

⎪⎪⎩

1

2

∥∥∥∥∥∥∥

(
y�t ,
√

αq�t ,
√

βht

)� −
⎛

⎜⎝
D√
αA√
βW

⎞

⎟⎠xt

∥∥∥∥∥∥∥

2

2

+ λ‖xt‖p

⎫
⎪⎪⎬

⎪⎪⎭

(6)

where ht ∈ R is the label with W ∈ R
1×s the related weight

vector, and therefore ‖ht −Wxt‖22 refers to the classification
error. α and β are hyper-parameters which control the con-
tribution of each term to reconstruction error and balance the
tradeoff. It can be seen that (6) restricts the representation of
original data. Furthermore, it is expected to let the original data
vectors from the same class share similar representations, thus
benefits the calibration of a machine learning model. The illus-
tration for supervised dictionary learning is shown in Fig. 5,
where the supervised information is appended to the end of the
unsupervised data vector and new feature vectors from same
class are similar in terms of structure.

The discriminative property in low-dimension of the new
feature is demonstrated in Fig. 6, where blue color refers to
the nonzero number. More than 1000 CCAS features and their
corresponding new features are selected as exemplars. Fig. 6(a)
shows the original CCAS feature which is sparse due to bench-
mark layouts. The dimensionality of the CCAS features is over
1000. On the other hand, as shown in Fig. 6(b), the new fea-
tures are in low-dimension space (dimensionality only 200)
meanwhile they can be roughly divided into two classes.

C. Online Algorithm

Recently, some attempts which explore label information are
proposed in succession, such as discriminative K-SVD [13],
kernelized supervised dictionary learning [14], label consistent
K-SVD [15] (LCK-SVD) dictionary learning, and supervised
K-SVD with dual-graph constraints [16].

However, most of them are based on K-SVD [17] which
belongs to batch-learning method. They are not suitable for
dealing with large dataset since the computation overhead
(e.g., computing the inverse of a very large matrix) may be
high. Online learning method applied in dictionary learning
model [18], [19] is a good idea, yet these algorithms are
unsupervised.

(a) (b)

Fig. 6. Feature map comparison: (a) CCAS-based and (b) same features
after supervised feature revision.

Therefore, we develop an efficient online learning method,
which seamlessly combines aforementioned supervised dictio-
nary learning. Unlike the batch approaches, online approaches
process training samples incrementally, one training sample
(or a small batch of training samples) at a time, similarly to
stochastic gradient descent.

According to our proposed formulation [i.e., (6)], the joint
optimization of both dictionary and sparse codes is nonconvex,
but subproblem with one variable fixed is convex. Hence, (6)
can be divided into two convex subproblems. Note that, in a
taste of linear algebra, our new input with label information,
i.e., (y�t ,

√
αq�t ,

√
βht)

� in (6), can be still regarded as the
original yt in (2). So is the new merged dictionary con-
sisting of D, A, and W. For simplicity of description and
derivation, in following analysis, we will use yt referring to
(y�t ,
√

αq�t ,
√

βht)
� and D standing for merged dictionary

with x as the sparse codes.
The two stages, i.e., sparse coding and dictionary construct-

ing, will be alternatively performed in iterations. Thus, in t-th
iteration, the algorithm first draws the input sample yt or a
mini-batch over the current dictionary Dt−1 and obtains the
corresponding sparse codes xt. Then use two updated auxiliary
matrices, Bt and Ct to help compute Dt.

The objective function for sparse coding is shown

xt
�= arg min

x

1

2

∥∥yt − Dt−1x
∥∥2

2 + λ‖x‖1. (7)
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Algorithm 1 SODL

Require: Input merged features Y ← {yt

}N
t=1, yt ∈ R

(n+s+1)

(including original CCAS features, discriminative sparse
code Q ← {qt

}N
t=1, qt ∈ R

s and label information H ←
{ht}Nt=1, ht ∈ R).

Ensure: New features X← {xt}Nt=1, xt ∈ R
s, dictionary D←{

dj
}s

j=1, dj ∈ R
(n+s+1).

1: Initialization: Initial merged dictionary D0, dj ∈ R
(n+s+1)

(including initial transformation matrix A0 ∈ R
s×s and

initial label weight matrix W0 ∈ R
1×s), C0 ∈ R

s×s ← 0,
B0 ∈ R

(n+s+1)×s ← 0;
2: for t← 1 to N do
3: Sparse coding yt and obtaining xt; � Equation (7)
4: Update auxiliary variable Bt; � Equation (8)
5: Update auxiliary variable Ct; � Equation (9)
6: Update dictionary Dt; � Algorithm 2;
7: end for

If the regularizer adopts l0-norm, solving (7) is NP-hard.
Although there exist some classical algorithms like match-
ing pursuit (MP) [20] and orthogonal MP (OMP) [21] to
address problem with l0-norm regularizer, nowadays, adopt-
ing l1-norm is much more popular. The reason is that l1-norm
is a convex replacement of l0-norm, and thus many more fancy
optimization algorithms can be exploited. In statistical com-
munity, (7) is a model called Lasso [22], which is short for
the least absolute shrinkage and selection operator. As we can
see in (7), Lasso is a penalized least squares technique that
puts l1 constraint on the estimated regression coefficients. It
is mainly based on the following two concepts. One is that l1
regularization approximates l0 regularization. The other is that
shrinkage operation improves prediction performance. Lasso
can be solved by coordinate descent [23], [24] and some
other first-order algorithms which are critical in large-scale
machine learning and deep learning [25]. For example, fast
iterative shrinkage-threshold algorithm (FISTA) [26] is a fancy
Lasso solver, which achieves the optimal convergence rate of
first-order algorithms. Although various variants exist, gradient
descent, and mirror descent are the foundations of first-order
methods [27].

Two auxiliary matrices Bt ∈ R
(n+s+1)×s and Ct ∈ R

s×s are
defined, respectively

Bt ← t − 1

t
Bt−1 + 1

t
ytx
�
t (8)

Ct ← t − 1

t
Ct−1 + 1

t
xtx�t . (9)

The objective function for dictionary construction is

Dt
�= arg min

D

1

t

t∑

i=1

{
1

2

∥∥yi − Dxi
∥∥2

2 + λ‖xi‖1
}
. (10)

Algorithm 1 summarizes the algorithm details of the
proposed SODL algorithm. First, in initialization stage, we
randomly pick some data of two categories from training
dataset as inputs Y. To initialize D, several iterations of
K-SVD [17] for each class are computed, and then all the

Algorithm 2 Rules for Updating Atoms

Require: Dt−1 ←
{
dj
}s

j=1, dj ∈ R
(n+s+1),

Bt ←
{
bj
}s

j=1, bj ∈ R
(n+s+1),

Ct ←
{
cj
}s

j=1, cj ∈ R
s.

Ensure: dictionary Dt ←
{
dj
}s

j=1, dj ∈ R
(n+s+1).

1: for j← 1 to s do
2: Update the j-th atom dj; � Equation (12) and (13)
3: end for

outputs of each K-SVD are combined. As a result, atoms are
naturally allocated to corresponding classes. After initializa-
tion of D, initial Q is ready. For initialization of A, we adopt
ridge regression model [28], as

arg min
A
‖Q− AX‖ + λ2‖A‖22. (11)

Similarly, for initial W, the ridge regression model is again
exploited. Then, we use coordinate descent algorithm [23],
[24] as the solving scheme to (7) (line 3). To accelerate the
convergence speed, (10) involves the computations of past
signals y1, . . . , yt and the sparse codes x1, . . . , xt. One way
to efficiently update dictionary is that introduce some suffi-
cient statistics, i.e., Bt ∈ R

(n+s+1)×s (line 4) and Ct ∈ R
s×s

(line 5), into (10) without directly storing the past information,
namely, input data sample yi and corresponding sparse codes
xi for i ≤ t. These two auxiliary variables play important
roles in updating atoms, which aggregates the past information
during computations. We further exploit block coordinate
method with warm start [24] to resolve (10) (line 6). As a
result, through some gradient calculations, we bridge the gap
between (10) and sequentially updating atoms based on

uj ← 1

C
[
j, j
]
(
bj − Dcj

)+ dj (12)

dj ← 1

max
(∥∥uj
∥∥

2, 1
)uj. (13)

For each atom dj, the updating rule is illustrated in
Algorithm 2. In (12), Dt−1 is selected as the warm start of D. bj

indicates the jth column of Bt, while cj is the jth column of Ct.
C[j, j] denotes the jth element on diagonal of Ct. Equation (13)
is an l2-norm constraint on atoms to prevent atoms becoming
arbitrarily large (which may lead to arbitrarily small sparse
codes). Bertsekas [29] proved that in the stage of constructing
dictionary, the convex optimization problem allowing separa-
ble constraints in the updated blocks (columns) will guarantee
the convergence to a global optimum.

D. Convergence Analysis

Proposed algorithm deals the nonconvex optimization
problem in an alternative framework. As a result, our algo-
rithm converges to a stationary point of the objective function,
while finding the global optimum is not guaranteed [30]. In
fact, for practical applications, stationary points are enough
empirically.

Before our analysis, some definitions should be made in
advance. The optimal value of the sparse coding problem is
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defined as

l
(
yi, D
)
� min

x

{
1

2

∥∥yi − Dx
∥∥2

2 + λ‖x‖1
}
. (14)

As illustrated in (15), we denote the empirical cost function
(whose value is supposed to be small) to check whether D is
good at representing the input data

ft(D) � 1

t

t∑

i=1

l
(
yi, D
)
. (15)

Actually, according to [31], the minimization of empirical
cost ft(D) with high accuracy is not the real spotlight. By
contrast, the minimization of expected cost f (D), i.e., (16), is
what we want to explore

f (D) � Eyt

[
l
(
yt, D
)] = lim

t→∞ ft(D). (16)

We define the surrogate function, f̂t in (17), for ft. It can be
seen that it upperbounds the empirical cost ft(Dt)

f̂t(D) � 1

t

t∑

i=1

{
1

2

∥∥yi − Dxi
∥∥2

2 + λ‖xi‖1
}
. (17)

The f̂t(Dt) and ft(Dt) converge almost to the same limit and
hence that f̂t plays a role as the surrogate function for ft. As a
result, Dt is close to Dt−1 for large value of t, which motivates
us to use Dt−1 as a warm start when computing Dt.

Theorem 1: Assume the surrogate function f̂t are strictly
convex with lower-bounded Hessians, when t goes infinity, the
distance between the stationary points of proposed dictionary
learning problem and dictionary Dt will converge to 0.

The detailed proof is provided in Appendix B.

IV. SRAF INSERTION

A. SRAF Probability Learning

After feature extraction via CCAS and revision through
SODL framework, the discriminative, low-dimension features
of grids on a layout are obtained. Therefore, a machine learn-
ing model is calibrated by new features of training set, and
predicts the probabilities of inserting SRAF patterns into
gridded testing layout. This procedure is named as SRAF
probability learning, which not only guides the SRAF inser-
tion, but also bridges the gap between the previous continuous
optimization problem and the consequent discrete optimization
issue. For fair comparison, we exploit the same classifier,
logistic regression, as used in [7]. This widely used model
harnesses the logistic function as the core to predict the
probabilities for classes.

B. SRAF Insertion via ILP

Through SODL model and classifier, the probabilities of
2-D grids can be obtained. Based on design rules for the
machine learning model, the label for a grid with probabil-
ity less than the threshold is “0.” It means that the grid will
be ignored when doing SRAF insertion. However, in [7], the
scheme to insert SRAFs is a little naive and greedy. Actually,
combined with some SRAF design rules, such as maximum

Fig. 7. SRAF grid model construction.

length and width, minimum spacing, the SRAF insertion can
be modeled as an ILP problem. With ILP model to formu-
late SRAF insertion, we will obtain a global view of SRAF
generation.

In the objective of the ILP approach, we only consider valid
grids whose probabilities are larger than the threshold. The
probability of each grid is denoted as p(i, j), where i and j
indicate the index of a grid. For simplicity, we merge the cur-
rent small grids into new bigger grids, as shown in Fig. 7. Then
we define c(x, y) as the value of each merged grid, where x
and y denote the index of a merged grid. The rule to compute
c(x, y) follows:

c(x, y) =
{∑

(i,j)∈(x,y) p(i, j), if ∃ p(i, j) ≥ threshold
−1, if all p(i, j) < threshold.

(18)

The motivation behind this approach is twofold. One is to
speed up the ILP via reducing the problem size. Because we
can predetermine some decision variables whose values are
negative. The other is to keep the consistency of predictions
in SRAF probability learning.

Although the grid mergence may lead to some quality degra-
dation, it is acceptable compared to the magnificent efficiency
increase. The quality degradation is caused by the a few loca-
tion deviations of SRAF patterns under grid models with
different sizes. However, in SRAF insertion, the lithographic
performance mainly depends on the number of SRAF pat-
terns and SRAF pattern shapes, while few location deviations
affects the lithographic performance minorly. On the other
hand, according to the design rules, the minimum size of an
SRAF pattern is 40 nm × 40 nm, and the size of a merged
grid is also 40 nm× 40 nm. It is more natural to exploit grid
mergence, and thus boosts the ILP. Otherwise, it would be
time-consuming to find solutions for ILP since constraints are
much more complicated.

1) ILP With Relaxed Design Rules: In ILP for SRAF inser-
tion, our real target is to maximize the total probability of valid
grids with feasible SRAF insertion. Accordingly, it is manifest
to put up with the objective function, which is to maximize the
total value of merged grids. With considering relaxed design
rules (e.g., relaxing maximum length from 90 to 120 nm), the
ILP formulation is shown

max
a(x,y)

∑

x,y

c(x, y) · a(x, y) (19a)

s.t. a(x, y)+ a(x− 1, y− 1) ≤ 1, ∀(x, y) (19b)

a(x, y)+ a(x− 1, y+ 1) ≤ 1, ∀(x, y) (19c)
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Fig. 8. Relaxed design rules for SRAF insertion under the grid model.

Fig. 9. Five basic types of SRAF patterns under general design rules.

a(x, y)+ a(x+ 1, y− 1) ≤ 1, ∀(x, y) (19d)

a(x, y)+ a(x+ 1, y+ 1) ≤ 1, ∀(x, y) (19e)

a(x, y)+ a(x, y+ 1)+ a(x, y+ 2)

+ a(x, y+ 3) ≤ 3, ∀(x, y) (19f)

a(x, y)+ a(x+ 1, y)+ a(x+ 2, y)

+ a(x+ 3, y) ≤ 3, ∀(x, y) (19g)

a(x, y) ∈ {0, 1}, ∀(x, y). (19h)

Here, a(x, y) refers to the insertion situation at the merged
grid (x, y). According to the rectangular shape of an SRAF
and the spacing rule, the situation of two adjacent SRAFs
on the diagonal is forbidden by Constraints (19b)–(19e);
e.g., Constraint (19b) requires the a(x, y) and the left upper
neighbor a(x − 1, y − 1) cannot be 1 at the same time,
otherwise which will lead to the violation against design
rules. Constraints (19f)–(19g) restrict the maximum length
of SRAFs. Fig. 8 actively illustrates these linear constraints
coming from design rules.

2) ILP With General Design Rules: Previous case is a
relaxed version. However, in most scenarios, more general
design rules for inserting SRAFs are considered. Especially,
the off-grid pattern is allowed. Now, 90 nm as maximum
length for SRAFs and 40 nm still the minimum length is taken
into account, and thus we choose five most representative types
for SRAF patterns which are shown in Fig. 9.

After considering the flexibility for more general rules, the
new ILP model is proposed in

max
a(x,y,i)

∑

x,y,i

wi · a(x, y, i) · v(x, y, i) (20a)

s.t. v(x, y, 1) = c(x, y)+ c(x− 1, y)

+ 0.25 · c(x− 2, y), ∀(x, y) (20b)

Fig. 10. Illustration of new ILP model.

v(x, y, 2) = c(x, y)+ c(x− 1, y), ∀(x, y) (20c)

v(x, y, 3) = c(x, y), ∀(x, y) (20d)

v(x, y, 4) = c(x, y)+ c(x, y+ 1), ∀(x, y) (20e)

v(x, y, 5) = c(x, y)+ c(x, y+ 1)

+ 0.25 · c(x, y+ 2), ∀(x, y) (20f)∑

i

a(x, y, i) ≤ 1, ∀(x, y) (20g)

a(x1, y1, i)+ a(x2, y2, j) ≤ 1

∀(x1, y1, i), (x2, y2, j) ∈ C (20h)

a(x, y, i) ∈ {0, 1}, ∀(x, y, i). (20i)

The decision variable a(x, y, i) is extended to three dimen-
sions, which indicates whether the ith type of SRAF pattern
should be inserted at the merged grid (x, y). v(x, y, i) means
the contribution of inserting the ith type into the merged grid
(x, y) to the objective function, while wi is the correspond-
ing weight parameter. The values for w1, w2, w3, w4, w5 are
set to be 1.4, 0.1, 1.0, 0.1, 1.4, respectively, which indicates
that SRAF patterns of 90 nm in length are more encouraged to
insert over patterns of 80 nm. Since the regular SRAFs around
the target pattern benefit lithography, we set the same value
for w1 and w5, and the same principle of assignment works
on w2 and w4. The different values for different SRAF pat-
terns are defined in Constraints (20b)–(20f). Constraint (20g)
sets the restriction that at most only one SRAF pattern can
be inserted in one grid. A conflict set C is introduced in the
formulation [see Constraint (20h)], and it contains the conflict
pairs of SRAF patterns between one grid and its neighbors.
Here, the “conflict” means the distance between two patterns
violates the spacing design rule. For instance, (x, y, 1) and
(x − 3, y + 1, 5) form one conflict pair, which is exemplified
in Fig. 10. To address the problem efficiently, we can assume
the main directions for inserting an SRAF pattern are up and
right. Hence, under current spacing design rule, we only con-
sider the partial neighborhood of the merged grid (x, y) (i.e.,
the grid labeled with “1” in Fig. 10), which is the area filled
with small green dots and the grids labeled with “2” and “3.”
It can be seen that by introducing the concept of conflict set,
the new ILP model is more flexible than previous one and able
to handle new spacing design rule.
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TABLE I
F1 SCORE (%) COMPARISON WITH [7]

V. EXPERIMENTAL RESULTS

We implement the framework using python on an 8-core
3.7-GHz Intel platform. To verify the effectiveness and the
efficiency of our SODL algorithm, we employ the same bench-
mark set as applied in [7], which consists of 8 dense layouts
and 10 sparse layouts with contacts sized 70 nm. The spacing
for dense and sparse layouts are set to 70 nm and ≥ 70 nm,
respectively.

Tables I and II compare our results with a state-of-the-
art machine learning-based SRAF insertion tool [7]. Column
“Benchmark” lists all the test layouts in both tables. In
Table I, Column “ISPD’16” refers to the performance of the
machine learning framework in [7], while Column “SODL”
denotes the results of our model. Within Table II, Columns
“SODL+Greedy” corresponds to the results of our SODL
framework without ILP model in post-processing, while
“SODL+ILP” and “SODL+NewILP” indicate the results from
different ILP models with and without relaxed SRAF rules.
Columns “F1-score,” “PV band,” “EPE,” and “CPU” are the
evaluation metrics in terms of the learning model performance,
the PV band area, the EPE, and the total runtime. Note that in
SODL+Greedy, the same greedy SRAF generation approach
as in [7] is utilized.

It can be seen from Table I that the SODL algorithm out-
performs [7] in terms of F1 score by 5.5%. This indicates the
predicted SRAFs by our model match the reference results
better than [7]. In other words, the proposed SODL-based fea-
ture revision can efficiently improve machine learning model
generality.

We exemplify the trends of runtime and F1 score with
respect to the changing of number of atoms, which is depicted
in Fig. 11. With an increment in number of atoms, runtime
ascends. Meanwhile, F1 score goes down until number of
atoms reaches a threshold. According to the theory of dic-
tionary learning, the number of atoms is the dimension of
the new feature. Dimension of features impacts the fitting of

Fig. 11. Trend of changing number of atoms.

Fig. 12. Scalability of proposed New ILP model.

(a) (b)

(c) (d)

Fig. 13. Different SRAF insertion methods on a dense layout example.
(a) Model-based. (b) ISPD’16 [7]. (c) SODL+ILP. (d) SODL+NewILP.

a machine learning model. Inappropriate dimensionality may
cause under-fitting or over-fitting issues. That is the main
reason why F1 scores fluctuate. On the other hand, with
the dimension increase of new features, the machine learn-
ing model suffers the running time issue. The fitting time of
some machine learning models like SVM, increases nonlin-
early. One reason is the time complexities of algorithms. More
importantly, the converge problem affects the running time.

We also feed the SRAFed layouts into Calibre [32] to go
through a simulation flow that includes OPC and lithography
simulation, which will generate printed contours under a given
process window. The simulation results summarized in Table II
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TABLE II
LITHOGRAPHIC PERFORMANCE COMPARISON WITH [7]

(a) (b)

(c) (d)

Fig. 14. Different SRAF insertion methods on a sparse layout example.
(a) Model-based. (b) ISPD’16 [7]. (c) SODL+ILP. (d) SODL+NewILP.

show that we get better PV band and EPE results. In particular,
after incorporating relaxed SRAF design rules with an ILP
solution, proposed algorithm behaves even much better with
an average PV band of 2.609×10−3μm2 and an average EPE
of 0.774 nm that surpass [7] with 2% less PV band and 3% less
EPE. With considering general SRAF design rules in a new
ILP model, our method also performs better in terms of 3.5%
less PV band area and 11.8% less EPE within an acceptable
runtime. The reason why the running time increases is that
general design rules are much more complicated. For example,

TABLE III
COMPARISONS OF TOTAL AREA (μm2) OF INSERTED SRAFS

we need to consider the off-grid patterns. On the other hand,
the neighborhood considered in the new ILP model also affects
the running time. For one grid, the neighborhood area where
SRAF patterns may conflict with others becomes much larger
than in the original ILP (see Fig. 10). Although the runtime
of new ILP model is almost as twice as the original one’s,
it is worth adopting the model considering the increase of
lithographic performance and size of benchmarks.

To further demonstrate the effectiveness and efficiency of
proposed ILP models, scalability is explored. In Table II, the
area of different benchmarks ranges from 1070×1070 nm2 to
10630× 10670 nm2. We drew the relationship curve between
the layout area and the runtime, which is visualized in Fig. 12
to clarify the scalability issue further. Note that the bench-
marks of same area are removed in the illustration. For
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example, the benchmarks “Dense4” and “Dense5” are of
the same size, and we only keep “Dense4.”

The visualizations of simulation results for dense and sparse
patterns are exemplified in Figs. 13 and 14, respectively. The
differences between Figs. 13 (c) and (d), and 14(c) and (d) are
mainly due to different ILP models following different design
rules. Although the predictions from the machine learning
model guide the inserting, however, they do not dominate the
inserting process. The learning model only filters the invalid
small grids. Hence, after solving, the feasible solutions of two
ILPs to insert SRAFs can differ a lot.

In addition, the comparisons of total area of inserted SRAFs
among different methods are also summarized in Table III.
According to the results in Tables II and III, we can infer that
the total area of inserted SRAF is not the critical factor affects
the lithography performance.

VI. CONCLUSION

In this article, for the first time, we have introduced the
concept of dictionary learning into the layout feature extrac-
tion stage and further proposed a supervised online algorithm
constructing dictionary. This algorithm has been exploited
into a machine learning-based SRAF insertion framework.
To get a global view of SRAF generation, combined with
design rules, two ILP models have been built to generate
SRAFs. The experimental results show that the F1 score of
machine learning model in SRAF insertion has been boosted
and runtime overhead is also acceptable compared with a state-
of-the-art SRAF insertion tool. More importantly, the results
of lithography simulations demonstrate the promising lithog-
raphy performance in terms of PV band area and EPE. With
the transistor size shrinking rapidly and the layouts becoming
more and more complicated, we expect to apply our ideas into
general VLSI layout feature learning and encoding.

APPENDIX A
CALCULATION OF GRADIENT

In t-th iteration to update atoms of proposed algorithm, with
x fixed, (10) can be rewritten as

Dt
�= arg min

D

1

2t
‖Yt − Dt−1Xt‖2F (21)

�= arg min
D

1

2
tr
[
(Yt − Dt−1Xt)

�(Yt − Dt−1Xt)
]

(22)

�= arg min
D

1

2
tr
(

D�t−1Dt−1XtX�t − 2D�t−1YtX�t
)

(23)

�= arg min
D

(
1

2
tr
(

D�t−1Dt−1Ct

)
− tr
(

D�t−1Bt

))
(24)

�= arg min
D

(
1

2

∑

k

d�k
∑

i

dicik −
∑

k

d�k bk

)
. (25)

In the stage of updating atoms in new algorithm, block
coordinate descent algorithm, which means updating one atom
(i.e., dj) while fixing other atoms, is still exploited with warm
start mechanism. Therefore, the updating rule for atoms can

be derived from the following equation:

∂(25)

∂dj
=

∂

(
1

2

∑
k d�k
∑

i dicik −∑k d�k bk

)

∂dj
(26)

=
∂

(∑
k �=j d�j dkckj + 1

2
d�j djcjj −∑k d�k bk

)

∂dj
(27)

=
∑

k �=j

dkckj + djcjj − bj (28)

= Dcj − bj. (29)

APPENDIX B
PROOF OF THEOREM 1

Proof: As Ct and Bt are in a compact set, extracting con-
verging sequences becomes possible. Therefore, the assump-
tion could be made that two sequences converge to C∞
and B∞. As a result, Dt converges to D∞. Assuming that
V ∈ R

(n+s+1)×(s), f̂t upperbounds the empirical cost ft, i.e.,
f̂t(Dt + V) ≥ ft(Dt + V). When t → ∞, the inequality,
ˆf∞(D∞ + V) ≥ f (D∞ + V), still holds.

Introduce a sequence at > 0 which converges to 0. With
harnessing the Taylor expansion and using ˆf∞(D∞) = f (D∞),
the inequality (30) exists

f (D∞)+ tr
(

atV�∇ ˆf∞(D∞)
)
≥ f (D∞)+ tr

(
atV�∇f (D∞)

)
.

(30)

This inequality holds for all V, ∇ ˆf∞(D∞) = ∇f (D∞). A
first-order necessary optimality condition for D∞ being an
optimum of ˆf∞ is that −∇ ˆf∞ is in the normal cone of the con-
vex set of dictionary matrices at D∞ [33]. So the first-order
necessary optimality condition for D∞ being an optimum of
f is also validated. Since Bt and Ct asymptotically get close
to their accumulation points, −∇f (Dt) will be close to the
normal cone at Dt.
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