
Integration, the VLSI Journal 70 (2020) 70–79

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Fault tolerance in memristive crossbar-based neuromorphic computing
systems

Qi Xu a, Song Chen b, Hao Geng c, Bo Yuan d, Bei Yu c, Feng Wu b, Zhengfeng Huang a,∗

a Department of Electronic Science and Technology, Hefei University of Technology, China
b School of Microelectronics, University of Science and Technology of China, China
c Department of Computer Science and Engineering, The Chinese University of Hong Kong, China
d Department of Computer Science and Engineering, Southern University of Science and Technology, China

A R T I C L E I N F O

Keywords:
Neuromorphic computing system
Memristive crossbar
Fault tolerance
Hierarchical clustering

A B S T R A C T

In recent years, neuromorphic computing systems (NCS) based on memristive crossbar have provided a promis-
ing solution to enable acceleration of neural networks. However, Stuck-at faults in the memristor devices signif-
icantly degrade the computing accuracy of NCS. In this paper, we propose an effective fault tolerant framework
for memristive crossbar-based neuromorphic computing systems. First, a fault tolerance-aware hierarchical clus-
tering method is proposed to partition weight connections of a sparse neural network into clusters. Then, for
each cluster, memristive crossbar configuration is proposed to determine a suitable size of the crossbar with con-
sideration of both hardware cost and successful mapping rate. Next, an integer linear programming formulation
is developed to derive a connection-memristor mapping for fault tolerance. Finally, an efficient matching-based
heuristic algorithm is further proposed to speed-up the fault-tolerant mapping process. Experimental results show
that the proposed fault tolerant framework can improve the successful mapping rate and simultaneously reduce
the hardware cost.

1. Introduction

Neuromorphic computing systems (NCS) based on hardware
designs intend to mimic neuro-biological architectures [1]. Different
from conventional von Neumann architectures, NCS is often con-
structed with highly parallel, extensively connected, and collocated
computing and storage units, which eliminates the gap between
CPU computing capacity and memory bandwidth [2]. However, the
implementation of NCS on CMOS technology has been shown to suffer
from mismatch between NCS building blocks (neuron and synapse)
and CMOS primitives (Boolean logic). To address this problem, the
emerging memristive technology is adopted to implement synapse
circuit due to the similarity between memristive and synaptic behaviors
[3,4]. For example, the memristor is suitable to store the weight of
synapse since the resistance of memristor can be programmed by
applying current or voltage. In addition, compared with the state-
of-the-art CMOS design, memristive crossbar has been proven as
one of the most efficient nanostructures that carry out matrix-vector

∗ Corresponding author.
E-mail address: huangzhengfeng@139.com (Z. Huang).

multiplications while hardware cost and computation energy are signif-
icantly reduced [1]. However, despite of these tremendous advantages,
NCS implementations on memristive crossbars also encounter some
design challenges.

First, the crossbar utilization can be low if a large-scale sparse
neural network is directly implemented on a memristive crossbar,
resulting in highly area-inefficient designs. For instance, in LDPC
coding based on message passing algorithm, the network sparsity is
higher than 99% [5]. Many previous works have been proposed to
enable the efficient realization on memristive crossbars. An itera-
tive spectral clustering method is performed in Refs. [2,6] to group
the neural connections into a set of memristive crossbars. However,
since the spectral clustering is executed in every iteration, the meth-
ods could be time-consuming when the neural network is large.
Cui et al. [7] proposed a matrix reordering method to facilitate
sparse weight connections clustering. But the crossbar utilization is
not considered, so memristive crossbars with low utilization are still
generated.

https://doi.org/10.1016/j.vlsi.2019.09.008
Received 24 June 2019; Received in revised form 25 August 2019; Accepted 14 September 2019
Available online 23 September 2019
0167-9260/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2019.09.008
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2019.09.008&domain=pdf
mailto:huangzhengfeng@139.com
https://doi.org/10.1016/j.vlsi.2019.09.008


Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Second, memristor suffers from various defects and faults, leading
to a significant yield loss and errors in NCS. The faults occurred in
the fabrication process make the memristor get stuck at high or low
resistance state; the computational accuracy for NCS is limited to incor-
rect weights in memristive crossbar. To tolerate Stuck-at faults, a num-
ber of solutions have been proposed. Huangfu et al. [8] proposed a
mapping algorithm for tolerating Stuck-at faults by using extra memris-
tive crossbars. Xia et al. [9] proposed a remapping-based fault-tolerant
method by using the inherent sparsity of neural networks. Yuan et
al. [10] proposed a memetic algorithm for the defect-tolerant logic
mapping in crossbar-based nanoarchitectures. Tunali et al. [11] pro-
posed a hybrid fault tolerant logic mapping method. However, both
[10,11] are only considering the stuck-at-one faults. Therefore, the
methods are not suitable for stuck-at-zero faults. Su et al. [12] pro-
posed an integrated algorithm framework that performs mapping, logic
morphing, and logic hardening simultaneously. Logic morphing pro-
cess exploits the various equivalent forms of a logic function to toler-
ate faults. Meanwhile, logic hardening process adds redundant verti-
cal wires in crossbars to make the hardened logic function fault tol-
erable. As a result, the sizes of used crossbar are two or three times
larger than the sizes of the logic function matrix. Although the suc-
cessful mapping rate can be improved, the hardware utilization are
significantly reduced. Tunali et al. [13] developed a fault tolerant
logic mapping methodology for nano-crossbar arrays, which contains
pre-mapping morphing, defect oriented sorting, row by row matching,
and backtracking. In addition to mapping-based fault tolerant meth-
ods, another retraining-based method are proposed in Refs. [14–16] to
tolerate Stuck-at faults. However, when the number of faults is larger
than the inherent fault tolerance of the neural network, the perfor-
mance of retraining method will be degraded. Sometimes the hardware-
level fault tolerant scheme does not allow changes to the well trained
model [17].

To the best of our knowledge, there is no prior work focusing on
both above challenges, which means current state of the arts either
only solving sparsity problem in NCS or tackling fault-tolerance issue
alone. In this paper, we argue that taking account of both challenges
simultaneously will benefit the NCS design. According to this argument,
for the first time, we propose a fault tolerant synapse mapping frame-
work, in which both hardware utilization and successful mapping rate
are considered. Key technical contributions of this work are listed as
follows.

∙ Given a sparse neural network, A fault tolerance-aware hier-
archical clustering method is proposed to partition weight
connections into a set of clusters. In order to improve the
successful mapping rate of memristive crossbar-based NCS,
input neurons that connect to different output neurons are
grouped into the same cluster, under the guidance of Jaccard
distance metric.

∙ For connection matrix of each cluster, a non-linear program-
ming is proposed to determine suitable size of the mapped
memristive crossbar, considering both hardware cost and suc-
cessful mapping rate.

∙ Fault-tolerant mapping is formulated as an integer linear
programming (ILP) to map connection matrix to memristive
crossbar.

∙ An efficient matching-based heuristic algorithm is further
proposed to speed-up the ILP process.

∙ A Monte Carlo simulation is exploited to evaluate the perfor-
mance of the fault tolerant synapse mapping framework on
different benchmarks.

The remainder of this paper is organized as follows. Section 2
presents the preliminary and gives the problem formulation. Section
3 introduces the proposed fault tolerant framework for neuromorphic
computing systems. Section 4 lists experimental results, followed by
conclusion in Section 5.

Fig. 1. Sparse neural network.

2. Preliminaries

2.1. Neural network

In a neural network, pre-synaptic (i.e. input) neurons I send sig-
nals into the network, while post-synaptic (i.e. output) neurons O
receive information through memristors. The memristors will apply dif-
ferent weights on the information during transmission, which can be
expressed as O = WI. Theoretically, a memristor device can achieve
continuous analog resistance states. However, under the current tech-
nology, the imperfection of the fabrication process causes memristance
variations from device to device [18]. Thus in most memristive crossbar
designs, only two resistance states are adopted, i.e., high and low resis-
tance states. Compared with CMOS-based technology, memristor with
two resistance states can effectively reduce power consumption thanks
to low forming and set voltage [19]. In this paper, the synaptic weight
matrix W is represented as (1,−1) connection matrix where “1” indi-
cates a connection exists between two corresponding neurons and “−1”
vice versa. Note that “−1” value is only for the convenience of fault
tolerant mapping calculation, but not the true weight value. An exam-
ple of a sparse neural network is shown in Fig. 1, where each neuron is
only connected with two neurons in the previous layer.

2.2. Fault models in memristor

The computational accuracy of memristive crossbar-based NCS is
limited to faults in memristor. According to Refs. [20,21], most of
the memristor faults are caused by insufficient dopants or impurities.
Among all kinds of hard faults, stuck-at-one (SA1) faults and stuck-
at-zero (SA0) faults appear rather frequently [22]. The SA1 faults, on
one hand, are caused by permanent open switch defects and broken
word-lines. A memristor device with SA1 fault is always in the high
resistance state (HRS). The SA0 faults, on the other hand, are caused
by over-forming defects, reset failures and short defects. SA0 faults
force the on-chip memristors in a low resistance state (LRS) [14,22].
In nanocrossbar fabrication, it is generally believed that SA1 faults are
far more common than SA0 faults [12]. In this paper we use the memris-
tive crossbar matrix C to represent the states of crossbar, in which fault
free memristor is denoted as “0” and SA1 and SA0 faults are denoted
as “1” and “−1”, respectively. Via the memristive crossbar structure of
a neural network, the computation of O = CI is in (1) [23]. Note that
we assume that the faults are independently and uniformly distributed
as previous work did [10]. An example of memristive crossbar structure
is shown in Fig. 5.

To detect and identify the faults, several testing methods are devel-
oped. March-C algorithm is proposed to detect Stuck-at faults [22]. To
accelerate the test process, a sneak-path technique is proposed to test a
set of adjacent memristors simultaneously [24]. These testing methods
can pinpoint the exact locations of fault memristors, and hence improve
the yield of memristive crossbars with fault tolerance guaranteed.

71



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Fig. 2. The proposed fault tolerant framework for NCS.

2.3. Problem formulation

In this work, the successful mapping rate is defined as the proba-
bility of finding a valid mapping between connection matrix and mem-
ristive crossbar. The utilization of a memristive crossbar is given by
the ratio between the utilized connections in the network and the total
available connections in the crossbar. The area and the wirelength of
floorplan are used to evaluate the hardware cost of NCS. Therefore, the
successful mapping rate, the crossbar utilization, the area and the wire-
length of floorplan are exploited to quantify the simulation results. We
define the fault tolerance problem in NCS as follows:

Input: A sparse neural network and the fault probability distribution
in memristive crossbar.

Output: The physical implementation of the fault tolerant neuromor-
phic computing systems, including a set of memristive crossbars used
to store the weights of synapse in the sparse network.

Objective: Boosting the successful mapping rate and simultaneously
reducing the hardware cost.

3. Fault tolerant framework for NCS

The overall flow of the proposed fault tolerant framework for NCS
is shown in Fig. 2, which mainly consists of four stages: (1) Given a
sparse neural network, a fault tolerance-aware hierarchical clustering
method is proposed to partition sparse connections into clusters. (2)
Then, for the connection matrix of each cluster, a non-linear program-
ming is proposed to determine a suitable size of the mapped memristive
crossbar. (3) Next, an ILP based algorithm and a matching-based heuris-
tic method are proposed respectively to derive a connection-memristor
mapping for fault tolerance. (4) Finally, a floorplanning is performed to
realize the neuromorphic computing systems. Based on the floorplan-
ning results, we estimate the area and wirelength of NCS. In this work,
the neurons and the memristive crossbars are considered as blocks. The
neuron blocks connect the memristive crossbar blocks through wires.

Fig. 3 shows a floorplan example of a neural network based on mem-
ristive crossbars, where input neuron blocks connect to output neuron
blocks through memristive crossbar blocks. We exploit sequence pair
(SP) to represent floorplans. IARFP in Ref. [25] is adopted to conduct
the floorplanning. The chip area is evaluated by the method in Ref.
[25], which takes the fixed-outline constraint into account. The wire-
length is estimated by the half perimeter wirelength (HPWL) model.
In this paper, we focus on the first three stages. Details of these major
steps will be explained in the following sub-sections. For convenience,
some notations used in this section are listed in Table 1.

3.1. Network partitioning

In real applications, large neural networks are often sparse. If a
sparse neural network is directly implemented on a memristive cross-
bar, the crossbar utilization can be low, resulting in highly area-
inefficient designs. Besides, sometimes realizing the sparse neural net-

Fig. 3. Floorplan of neurons and crossbars.

Table 1
Notations used in this section.

W Connection matrix of a sparse neural network
C State matrix of a memristive crossbar
Wi Connection matrix of cluster i
Ci State matrix of the memristive crossbar for Wi to be mapped to
M, N Number of rows and columns of Wi
Mc , Nc Number of rows and columns of Ci
po, ps SA1 and SA0 fault rate

work on a single memristive crossbar with faults can not generate a
fault tolerant solution. Therefore, a fault tolerance-aware hierarchical
clustering method is proposed to partition sparse connections into a set
of dense clusters. After clustering, some “−1” weights are removed, and
thus reducing the possibility of mapping “−1” weights to SA1 faults.

Hierarchical clustering generates clusters in a bottom-up itera-
tive manner [26]. In every iteration, two clusters that are closest in
“distance” are merged. The metric of “distance” varies with specific
applications in practice. The iterative merging is repeated until all data
points are grouped into one cluster. In our proposed framework, to
improve the successful mapping rate of neuromorphic computing sys-
tems, input neurons connecting to different output neurons tend to be
clustered. We propose a distance metric between two input neurons, ip
and iq as follows:

d(ip, iq) = 1 − n10 + n01
n11 + n10 + n01

, (1)

where n11 represents the number of output neurons simultaneously con-
necting to ip and iq, while n10 and n01 count the number of output neu-
rons only connecting to ip or iq. For example in Fig. 4(a), the distance
between i3 and i4 is 1 − 2

3 = 1
3 . It can be seen that the distance metric

in Equation (1) forces input neurons connecting to different output neu-
rons to be clustered. The proposed metric is superior over other metrics,
because it is beneficial to reducing mapping errors. For example, i2 and
i3 are partitioned into a cluster, as shown in Fig. 4(b). We notice that
a connection exists between i3 and o5 (“1” weight), while i2 is not con-
nected to o5. Therefore, based on this staggered distribution, both row
and column reordering can avoid mapping the “1” weight to the SA0
fault.

Fig. 4 illustrates the process of hierarchical clustering. A sparse
neural network W with five input neurons (data points) is shown in
Fig. 4(a). When hierarchical clustering performs, according to the dis-
tance calculated by Equation (1), the first iteration step merges the
input neurons i1 and i5, and then the second iteration step groups the
input neurons i2 with i3. Next, the input neuron i4 is clustered with {i1,
i5} in the third iteration step. Finally, the two clusters containing {i1,

72



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Fig. 4. (a) Connection matrix W of a sparse neural network with five input neurons {i1,…, i5} and six output neurons {o1,…, o6}; (b) pruned connection matrices
of the two clusters W1 and W2 generated by hierarchical clustering.

Fig. 5. An example of the mapped memristive crossbar for W1.

i4, i5} and {i2, i3} respectively are re-united in the last iteration step.
Besides, the L-method [27] is adopted to determine the optimal

number of clusters in our work and thus, a regression problem is formu-
lated. After dealing with the connection matrix W shown in Fig. 4(a)
via the L-method, the input neurons are divided into 2 clusters. Then
we do the pruning by removing the output neurons without connecting
any input neurons. The two pruned connection matrices W1 and W2
are shown in Fig. 4(b). Generally, for a sparse network, mapping dense
clusters to memristive crossbars can achieve high utilizations.

3.2. Memristive crossbar configuration

In this stage, determining the size of the mapped memristive cross-
bar Ci for each connection matrix Wi emerges. Because larger crossbar
makes it easier to find a valid mapping solution, redundancy has been
introduced in previous work [28] during constructing a crossbar. How-
ever, the crossbar size is empirically set to 1.5 times of the connection
matrix size with ignoring hardware cost. Different from prior art, we
propose a non-linear programming to determine a suitable size of the
memristive crossbar for each cluster, with consideration of both hard-
ware cost and successful mapping rate. Note that “−1” weight can be
mapped to either fault free or SA0 fault point, while “1” weight can
be mapped to fault free or SA1 fault point. Additionally, we assume
that the faults are independently and uniformly distributed as previ-
ous work did [10]. Based on the above preliminaries, our non-linear
programming is modeled in Formula (2).

min
Mc,Nc

Mc × Nc, (2a)

s.t. Pr
1 = (1 − ps · N∕Nc)

nr
1 , (2b)

Pr
0 = (1 − po · N∕Nc)

nr
−1 , (2c)

P =
M−1∏

r=0
[1 − (1 − Pr

1 × Pr
0)

Mc−r] ≥ Pt , (2d)

Mc ≥ M,Nc ≥ N. (2e)

The objective function (2a) is to minimize the memristive crossbar
size. In constraints (2b) and (2c), nr

1 and nr
−1 represent the number of

“1” and “−1” weights in r-th row of Wi with nr
1 + nr

−1 = N. As illustrated
in constraints (2b) and (2c), when considering the redundant columns
in crossbar, Pr

1 shows the probability of mapping “1” weights in r-th
row of Wi to fault free or SA1 fault points in a row of Ci, while Pr

0
describes the probability of mapping “−1” weights in r-th row of Wi to
fault free or SA0 fault points in a row of Ci. Therefore, Pr

1 × Pr
0 refers to

the matching probability of the r-th row of Wi to one row of Ci. Given a
crossbar Ci with size Mc × Nc, the matching probability of the r-th row
of Wi to a row of Ci can be formulated with [1 − (1 − Pr

1 × Pr
0)

Mc ]. As a
result, multiplication of matching probability of all rows of Wi gives the
successful mapping rate P from Wi to Ci as shown in the constraint (2d).
According to the calculation for P, larger Mc and Nc improve P, mean-
while it increases the hardware overhead. So constraint (2d) (i.e., forc-
ing P to be larger than target value Pt) makes a trade-off between the
successful mapping rate and hardware cost. Formula (2) is addressed
by a greedy method, with Mc and Nc alternately increasing by 1 until
satisfying Pt .

For instance, after solving Formula (2) for W1 shown in Fig. 4(b),
the successful mapping rate P is to be larger than Pt until Mc = 5 and
Nc = 3 (one redundant row and one redundant column). Based on the
assumption that the faults are independently and uniformly distributed,
an example of the corresponding memristive crossbar C1 is shown in
Fig. 5.

3.3. ILP based mapping

In this section, we discuss how the fault tolerant mapping problem
can be formulated as an integer linear programming (ILP). For conve-
nience, some notations used in this section are listed in Table 2.

max
M∑

k=1

Mc∑

j=1

N∑

p=1

Nc∑

q=1
Xkjpq (3a)

s.t.
Mc∑

j=1
rkj = 1,∀k ∈ [1,M], (3b)

73



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Table 2
Notations used in ILP.

wkp weight value at k-th row and p-th column of Wi
sjq state value of memristor at j-th row and q-th column of Ci
rkj binary variable; if k-th row of Wi is mapped to j-th row of Ci then rkj = 1, otherwise rkj = 0 (1 ≤ k ≤ M, 1 ≤ j ≤ Mc)
cpq binary variable; if p-th column of Wi is assigned to q-th column of Ci then cpq = 1, otherwise cpq = 0 (1 ≤ p ≤ N, 1 ≤ q ≤ Nc)
Xkjpq binary variable; if rkj = 1 and cpq = 1 then Xkjpq = 1, otherwise Xkjpq = 0

M∑

k=1
rkj ≤ 1,∀j ∈ [1,Mc], (3c)

Nc∑

q=1
cpq = 1,∀p ∈ [1,N], (3d)

N∑

p=1
cpq ≤ 1,∀q ∈ [1,Nc], (3e)

rkj + cpq − 2 · Xkjpq ≥ 0,∀k, j, p, q, (3f)

rkj + cpq − Xkjpq ≤ 1,∀k, j, p, q, (3g)

wkp · (
Mc∑

j=1

Nc∑

q=1
sjq · Xkjpq) ≥ 0,∀k, p, (3h)

M∑

k=1

Mc∑

j=1

N∑

p=1

Nc∑

q=1
Xkjpq ≤ M · N, (3i)

rkj, cpq,Xkjpq ∈ {0,1},∀k, j, p, q. (3j)

Based on the above notations, the fault tolerant mapping problem
can be formulated as the following ILP (3). Given a connection matrix
Wi with size M × N and a corresponding memristive crossbar matrix Ci
with size Mc × Nc, constraint (3b) ensures that each row of Wi would
be mapped to one and only one row of Ci. Constraint (3c) guarantees
that at most one row of Wi can be mapped to a row of Ci. Similarly,
constraint (3d) is defined to ensure that each column of Wi would be
mapped to one and only one column of Ci, and constraint (3e) restricts
that at most one column of Wi can be mapped to a column of Ci. In
order to maintain the coherency of the mapping, a binary variable Xkjpq
is introduced. Constraint (3f) ensures that no row (column) of Wi is
mapped to a row (column) of Ci when the number of suitable mapping
memristors in Ci is not available. Xkjpq = 1 if and only if rkj = 1 and
cpq = 1, which is defined in constraint (3g). Note that “1” weight can
be mapped to either fault free or SA1 fault point, while “−1” weight

can be mapped to fault free or SA0 fault point. Thus constraint (3h) is
introduced to guarantee the correctness of the weight-memristor map-
ping. Besides, in order to find a valid mapping between weight matrix
Wi and memristive crossbar Ci, the mapping position of each weight
element of Wi at Ci must be known. Constraint (3i) ensures that the
number of mapping points will not be exceed the number of weight
elements. The objective function (3a) is to maximize the number of
mapping points. As a result, a valid mapping solution is reached when
all weight elements find mapping points. Although the ILP based map-
ping method is time consuming for the large weight matrix, it can
ensure the convergence to a global optimum compared with the heuris-
tic methods in Ref. [29]. As a result, a valid mapping between con-
nection matrix and memristive crossbar is guaranteed to be found if it
exists.

Observed from the ILP formulation, the number of variables
is (MMc + NNc + MNMcNc), and the number of constraints is
(M + Mc + N + Nc + 2 · MNMcNc + MN + 1).

3.4. Heuristic mapping

In this section, a matching-based heuristic algorithm is further pro-
posed to speed-up the connection-memristor mapping process. Given a
Wi with size M × N and a corresponding Ci with size Mc × Nc, two
decision vectors that can represent the mapping result need to be deter-
mined:

Table 3
Benchmark statistics.

Benchmark Size Sparsity Synapses

b1 784 × 10 56.45% 3414
b2 784 × 10 60.36% 3108
b3 784 × 10 62.95% 2905
b4 141 × 14 57.45% 840
b5 784 × 10 66.06% 2661
b6 481 × 32 69.13% 4752
b7 4096 × 1000 84.99% 614809
b8 4096 × 1000 90.01% 409190

Fig. 6. (a) W1 of cluster 1; (b) an example of the mapped memristor crossbar C1 for W1; (c) a bipartite graph of W1 to C1 under Ac = [1,2], in which a matching
cannot be solved; (d) a bipartite graph of W1 to C1 under Ac = [3,2] and the maximum bipartite matching result Ar = [2,1,3,5] (blue lines). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

74



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

(1) 1 × M Row Assignment Vector (Ar): Ar[k] = j if row k of Wi is
assigned to row j of Ci (1 ≤ k ≤ M, 1 ≤ j ≤ Mc);
(2) 1 × N Column Assignment Vector (Ac): Ac[p] = q if column p of
Wi is assigned to column q of Ci (1 ≤ p ≤ N, 1 ≤ q ≤ Nc).

The fault tolerant mapping is equivalent to the subgraph iso-
morphism problem, which is an NP-complete problem [30]. Thus
most of existing algorithms are not efficient enough to jointly
tackle two decision vectors Ar and Ac. In our relaxed problem,
Ac is fixed, thus Ar is expected to be efficiently solved by bipar-
tite matching. However, sometimes the algorithm is unfortunately
stuck in finding a valid solution under the current Ac. Therefore,
column permutations are exploited to update Ac until reaching a
valid Ar .

Algorithm 1 Matching-based Heuristic
Input: Wi and Ci.
Output: Ac and Ar.
1: Rearrange columns of Wi in descending order according
to the number of “1” weights;
2: Rearrange columns of Ci in ascending order according to
the number of SA0 faults; ⊳ Ac initialization
3: for j ← 1 to K do
4: Construct a bipartite graph between rows of Wi and Ci;
5: Maximum bipartite matching; ⊳ Kuhn_Munkres
6: if a maximum bipartite matching is found then
7: Record Ar;
8: break;
9: else
10: Applying a pairwise column permutation of Ci;
11: Update Ac according to permutation result;
12: end if
13: end for

The major steps of the proposed matching-based heuristic algo-
rithm are summarized in Algorithm 1. First, in order to reduce the
matching runtime, a rearrangement for the columns of Wi and Ci is
performed (lines 1–2). Because “1” weight cannot be mapped to SA0
fault, we tend to map the columns with more “1” weights in Wi to
the columns with fewer SA0 faults in Ci during the rearrangement.
As a result, an initial Ac is obtained. According to our preliminary
observations, the rearrangement of matrices process can reduce the
mapping runtime by 15.4%. Then given the Ac, in order to repre-
sent all the possible row matching from Wi to Ci, a bipartite graph
G(V,E) is constructed (line 4). Here vertex set V = V1 ∪ V2, where V1
is the row set of Wi and V2 is the row set of Ci. Besides, the edge set
E = {(p, q) ∣ p ∈ V1canbematchedtoq ∈ V2}. For the bipartite graph,
Kuhn_Munkres algorithm is used to find a maximum bipartite matching
[31] (line 5). If each row of Wi has a corresponding matching row of Ci,
it means that a valid solution is found (lines 7–8). Otherwise column
permutations are performed for Ci (lines 10–11). The above process

is terminated until a valid solution is found or satisfying the iteration
number K.

We exemplify the process of the matching-based heuristic algorithm
with Fig. 6. Given a W1 shown in Fig. 6(a) which is the clustering result
in Fig. 4 and a corresponding C1 illustrated in Fig. 6(b), if Ac equals to
Refs. [1,2], a corresponding bipartite graph is constructed as presented
in Fig. 6(c). Since both rows o2 and o3 of W1 can only be mapped to
row r4 of C1, a valid solution cannot be solved under the Ac. Then a
pairwise column permutation is performed to reorder the column of C1.
If columns c1 and c3 of C1 are swaped (Ac = [3,2]), a corresponding
bipartite graph is constructed as shown in Fig. 6(d). A valid solution
can be obtained by Kuhn_Munkres algorithm (blue lines in Fig. 6(d)),
which means rows o1, o2, o3 and o5 of W1 are mapped to rows r2, r1, r3
and r5 respectively. Therefore, the combination of Ar = [2,1,3,5] and
Ac = [3,2] is a valid mapping from W1 to C1.

4. Experimental results

We implement the proposed framework using MATLAB on a
2.20 GHz 64-bit Windows 7 machine with 12 GB RAM. IARFP [25]
is adopted to conduct the floorplanning, which is run on a 12-core
2.0 GHz Linux server with 64 GB RAM. GUROBI [32] is used as the
ILP solver. po and ps are set to 9.04% and 1.75%, respectively [14,22].
The value of Pt is set to 99%. Monte Carlo simulations are tested with a
sample size of 400. The areas of neurons and memristive crossbars with
different sizes are extracted from Refs. [2,33]. The evaluation method in
Ref. [20] is adopted to estimate power and delay overhead. In the work,
we consider the similar two-level logic design [20], and thus the delay
overhead for all testbenches is constant (7 cycles). In addition, since the
energy consumption in a crossbar is proportional to the number of the
used memristors, the power factor defined as the ratio of utilized mem-
ristors in crossbar to the delay overhead can be adopted to describe
the power consumption [20]. To evaluate the proposed algorithm, a
two-layer feed-forward neural network model for MNIST handwritten
digit recognition is first exploited. Three sparse connection matrices
of the neural network are generated to evaluate the proposed algo-
rithm (b1–b3). Then we also randomly generate three sparse connection
matrices with different sizes and sparsities (b4–b6). Finally AlexNet is
trained for ImageNet [34] dataset, which consists of five convolutional
layers, three pooling layers and three fully connected layers. Because
more than 90% of the weights are situated in the fully connected lay-
ers, hence we mainly focus on the fully connected layers. By using the
synapse-granularity pruning, two sparse weight matrices of the last fully
connected layers are achieved (b7–b8). Table 3 lists all the statistics of
different test cases.

4.1. Effectiveness of fault tolerant framework

In the experiment, two different design methodologies are compared
to demonstrate the effectiveness of the proposed fault tolerant frame-

Table 4
Performance evaluation of the proposed fault tolerant framework.

Bench Area Wire Util PF FC + NLP + ILP FC + NLP + MH

(mm2) (mm) (%) Succ(%) RT(s) Succ(%) RT(s)

b1 1.02 588.20 30.38 44.49 100.0 10.19 100.0 0.20
b2 0.98 550.04 30.70 40.38 100.0 10.34 100.0 0.34
b3 0.95 546.50 30.61 37.72 100.0 12.77 100.0 0.41
b4 0.22 62.21 28.92 17.05 100.0 6.31 96.25 0.08
b5 0.92 532.08 26.05 34.56 NA >1800 94.18 0.68
b6 0.89 390.22 22.58 56.37 NA >1800 90.32 0.79
b7 6.08 2181.00 23.51 2927.66 NA >1800 83.51 10.62
b8 5.47 1903.59 22.19 2015.72 NA >1800 80.17 10.97

75



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Fig. 7. Comparison between “SC + NLP + MH” and “FC + NLP + MH” on (a) success rate and (b) area.

Fig. 8. Floorplan examples of the neural network b1 generated by (a) “SC + NLP + MH” (area:1.09 mm2); (b) “FC + NLP + MP” (area:1.02 mm2).

work for NCS. The experimental results are listed in two columns of
Table 4. “FC + NLP + ILP” represents that based on the clustering
results generated by the proposed fault tolerance-aware clustering (FC,
see Section 3.1), the memristive crossbar size is determined by the pro-
posed non-linear programming (NLP, see Section 3.2), and then the
proposed ILP model introduced in Section 3.3 is adopted to derive a
connection-memristor mapping (ILP). “FC + NLP + MH” represents that
instead of using the ILP model, the proposed matching-based heuristic
algorithm presented in Section 3.4 is used to generate a connection-
memristor mapping (MH). “Succ” refers to the successful mapping rate
which is calculated by the ratio of the number of samples with valid

mapping to the total size of samples. “Area” and “Wire” represent chip
area and total half-perimeter wirelength overhead, respectively. “Util”
lists the average utilization of all mapped crossbars. “PF” denotes the
average power factor of all mapped crossbars. “RT” reports the compu-
tational time of the mapping process. “NA” represents that the fault
tolerant mapping solution cannot be achieved within the time limit
(1800s).

As shown in Table 4, “FC + NLP + ILP” can achieve 100% success-
ful mapping rate on b1–b4, while “FC + NLP + MH” only obtains 100%
successful mapping rate on b1–b3, which demonstrates the effectiveness
of the proposed ILP model for fault tolerance. But since ILP is an NP-

Fig. 9. Effect of the fault rate of SA1 and SA0 on performance (b1 testbench).

76



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

hard problem, its runtime increases dramatically with the size of the
neural network. As shown in Table 4, “FC + NLP + ILP” cannot gen-
erate a valid mapping solution on b5–b8 within the time limit, which
indicates that for large weight matrices, ILP based method is very time
consuming. On the other hand, our proposed heuristic method is very
efficient. Note that since “FC + NLP + ILP” and “FC + NLP + MH” are
based on the same clustering results and memristive crossbars, here the
area, the wirelength, the hardware utilizations and the power factor are
the same.

In addition, to verify the effectiveness of the proposed fault
tolerance-aware hierarchical clustering, we define a comparison exper-
iment that uses a single crossbar to implement the neural network
(SC). Fig. 7 shows the successful mapping rate and average area
cost of the two different methodologies of “SC + NLP + MH” and
“FC + NLP + MH”. As shown in the figure, the successful map-
ping rate of “FC + NLP + MH” methodology is quite larger than
“SC + NLP + MH” method, which demonstrates the effectiveness
of the proposed fault tolerance-aware clustering method. Besides,
“FC + NLP + MH” methodology can also reduce the area of NCS.
A floorplan of the neural network b1 generated by the two method-
ologies of “SC + NLP + MH” and “FC + NLP + MH” are shown in
Fig. 8. It can be seen that through consideration of sparse connection,
“FC + NLP + MH” methodology can efficiently reduce floorplan area
consumption.

Fig. 9 illustrates the trends of the successful mapping rate and uti-
lizations of all crossbars with respect to the changing of po and ps. In the
experiment, we perform “FC + NLP + MH” on testbench b1. When po is
set to 9.04%, the successful mapping rate and utilizations of crossbars
are varied with ps, shown as in Fig. 9(a). We notice that as ps increases,
both the successful mapping rate and the utilization of crossbars are
reduced. That is because, based on the constraint (2b), Pr

1 drops with
the increases of ps. As a result, according to constraint (2d), large mem-
ristive crossbars are generated to ensure that the successful mapping
rate P is larger than the target value Pt . Thus the utilizations of cross-
bars are decreased. The same trend can also be observed in Fig. 9(b),
where ps is set to 1.75% and the successful mapping rate and utiliza-
tions of crossbars are changed with po. In addition, in Fig. 9(a) and
(b), it can be seen that SA0 fault has a greater impact on the mapping
performance than SA1 fault.

4.2. Comparison with previous works

Here we compare three different fault tolerant frameworks for NCS,
as listed in three columns of Table 5. In “AutoNCS” [2], an iterative
spectral clustering is repeatedly performed to partition the sparse con-
nections into dense clusters. However, the fault tolerance is not con-
sidered during the clustering. Based on the cluster results generated
by “AutoNCS”, we map the connection matrix of each cluster to a
memristive crossbar with the same size, and the proposed matching-
based heuristic algorithm is applied to derive a connection-memristor
mapping. In “Hybrid” [11], a hybrid fault tolerant mapping method
is presented to tolerate stuck-at-one faults. But the stuck-at-zero faults
are not considered in the work. In order to compare with “Hybrid”,
we also implement the hybrid method to consider both SA0 and SA1
faults. Without the fault tolerance-aware clustering, we directly map
the sparse connection matrix to a single memristive crossbar by the
hybrid method. The mapped memristive crossbar is set to the same size
as the sparse connection matrix.

In the first experiment, we compare the proposed fault tolerant
framework with “AutoNCS” [2]. As shown in Table 5, compared with
“AutoNCS”, the proposed fault tolerant framework can improve the suc-
cessful mapping rate of NCS by 36.12%, while the area, the wirelength
overhead and the power factor are reduced by 6%, 6% and 4%, respec-
tively. This means the crossbars generated by “AutoNCS” are larger than
the proposed fault tolerant framework. Since the larger the crossbar, the
huger solution space for connection-memristor mapping. As a result,

Ta
bl

e
5

Co
m

pa
ri

so
n

w
ith

st
at

e-
of

-th
e-

ar
t.

Be
nc

h
A

ut
oN

CS
[2

]
H

yb
ri

d
[1

1]
FC

+
N

LP
+

M
H

Su
cc

A
re

a
W

ir
e

U
til

PF
RT

Su
cc

A
re

a
W

ir
e

U
til

PF
RT

Su
cc

A
re

a
W

ir
e

U
til

PF
RT

(%
)

(m
m

2 )
(m

m
)

(%
)

(s
)

(%
)

(m
m

2 )
(m

m
)

(%
)

(s
)

(%
)

(m
m

2 )
(m

m
)

(%
)

(s
)

b1
62

.5
5

1.
03

62
3.

50
39

.5
1

45
.7

2
1.

12
10

0.
0

1.
09

59
4.

20
43

.5
5

48
7.

71
0.

37
10

0.
0

1.
02

58
8.

20
30

.3
8

44
.4

9
0.

20
b2

61
.0

0
1.

02
57

4.
83

36
.1

7
41

.6
3

1.
80

10
0.

0
1.

05
70

3.
53

39
.6

4
44

4.
00

0.
38

10
0.

0
0.

98
55

0.
04

30
.7

0
40

.3
8

0.
34

b3
71

.5
0

1.
01

54
2.

86
35

.0
5

38
.7

3
3.

59
10

0.
0

1.
04

58
1.

68
37

.0
5

41
5.

00
0.

42
10

0.
0

0.
95

54
6.

50
30

.6
1

37
.7

2
0.

41
b4

10
0.

0
0.

23
63

.7
4

36
.0

9
17

.4
5

0.
01

94
.0

0
0.

25
63

.3
1

42
.5

5
12

0.
00

0.
10

96
.2

5
0.

22
62

.2
1

28
.9

2
17

.0
5

0.
08

b5
66

.4
0

0.
95

52
4.

50
30

.1
3

35
.4

8
1.

78
90

.0
0

1.
00

57
6.

24
33

.9
4

38
0.

14
6.

17
94

.1
8

0.
92

53
2.

08
26

.0
5

34
.5

6
0.

68
b6

34
.9

4
0.

97
46

3.
30

26
.8

7
57

.5
0

1.
01

41
.1

8
1.

02
42

5.
08

30
.8

7
67

8.
86

9.
52

90
.3

2
0.

89
39

0.
22

22
.5

8
56

.3
7

0.
79

b7
30

.8
1

6.
53

23
52

.7
5

27
.3

3
30

49
.6

5
35

.4
1

39
.0

5
6.

79
24

23
.3

3
31

.1
6

87
82

9.
86

42
.5

1
83

.5
1

6.
08

21
81

.0
0

23
.5

1
29

27
.6

6
10

.6
2

b8
28

.2
7

5.
84

20
49

.0
7

23
.8

9
20

78
.0

6
36

.3
9

37
.5

2
6.

02
21

10
.5

4
27

.2
3

58
45

5.
71

40
.1

7
80

.1
7

5.
47

19
03

.5
9

22
.1

9
20

15
.7

2
10

.9
7

av
er

ag
e

56
.9

3
2.

20
89

9.
32

31
.8

8
67

0.
53

10
.1

4
75

.2
2

2.
28

93
4.

74
35

.7
5

18
60

1.
41

12
.4

6
93

.0
5

2.
07

84
4.

23
26

.8
7

64
6.

74
3.

01
ra

tio
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

32
1.

04
1.

04
1.

12
27

.7
4

1.
23

1.
63

0.
94

0.
94

0.
84

0.
96

0.
30

77



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Fig. 10. Comparison between of “FC + EV [28]+MH” and “FC + NLP + MH” on (a) utilization and (b) area.

Fig. 11. Comparison between of “FM” [13] and “FC + NLP + MH” on (a) success rate and (b) runtime.

compared with “AutoNCS”, the proposed fault tolerant framework can
reduce the time of the matching process by 70%.

In the second experiment, we compare the proposed fault tolerant
framework with “Hybrid” [11]. As shown in Table 5, compared with
“Hybrid”, the proposed fault tolerant framework can improve the suc-
cessful mapping rate of NCS by 17.83%, while the area and the wire-
length overhead are reduced by 10% and 10%, respectively. We also
observe that “Hybrid” significantly increase the power factor. The rea-
son is that, in “Hybrid”, we directly map the sparse connection matrix
to a single large memristive crossbar without the clustering. But in
“AutoNCS” and “FC + NLP + MH”, a set of crossbars are generated
to implement the network, and thus the average power factor of cross-
bars are decreased. Besides, since the connection matrix is mapped to
a single crossbar without redundant rows and columns in “Hybrid”, the
utilization of crossbars generated by the proposed fault tolerant frame-
work is reduced.

In the third experiment, the performance of the proposed memris-
tive crossbar configuration method is analyzed. “FC + EV [28]+MH”
represents that based on the clustering results generated by the pro-
posed fault tolerance-aware clustering (FC), the memristive crossbar
size is set to an empirical value (EV, Mc∕M = Nc∕N = 1.5) [28], and
then the proposed matching-based heuristic algorithm is adopted to
derive a connection-memristor mapping (MH). We compare “FC + EV
[28]+MH” with “FC + NLP + MH”. Fig. 10 shows utilizations of all
crossbars and the average area of the floorplan generated by the two
methodologies. As shown in the figure, “FC + NLP + MP” methodology
can reduce the area and increase the hardware utilization.

In the fourth experiment, we compare “FC + NLP + MH” frame-
work with “FM” [13]. “FM” denotes that the sparse connection matrix
is directly mapped to a single crossbar by the heuristic mapping method
in Ref. [13], without the fault tolerance-aware clustering. The suc-
cessful mapping rate and the runtime of the mapping process of the
two frameworks are illustrated in Fig. 11. As shown in the figure,
“FC + NLP + MH” can improve the successful mapping rate and reduce
the mapping runtime. That is because, the fault tolerant mapping is
just one stage of the proposed fault tolerant framework for memris-
tive crossbar-based NCS, thus purely mapping algorithm itself is hard
to achieve reasonable fault tolerance in NCS.

5. Conclusion

In this paper, we have proposed a synapse fault tolerant frame-
work for memristive crossbar-based neuromorphic computing systems,
with consideration of both hardware cost and successful mapping rate.
Experimental results demonstrate that, compared with state of the arts,
our proposed framework can effectively improve the successful map-
ping rate and reduce the hardware cost. Memristive crossbar provides
an efficient hardware implementation for neuromorphic networks, thus
we believe this paper will stimulate more research on fault tolerance
design for memristive crossbar-based NCS.

Besides, in a memristor-based NCS, programming the resistance of
the memristors suffer from variations. As a result, the actual program-
ming resistance is deviated from its target resistance. In future, we plan
to investigate a variation-aware framework to tolerate the stochastic
resistance variation.

78



Q. Xu et al. Integration, the VLSI Journal 70 (2020) 70–79

Acknowledgment

This work is supported in part by the National Natural Science
Foundation of China (NSFC) under grant No. 61904047, 61874156,
61574052, the Fundamental Research Funds for the Central Univer-
sities of China under grant No. JZ2019HGBZ0159, and The Research
Grants Council of Hong Kong SAR (Project No. CUHK24209017).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.vlsi.2019.09.008.

References

[1] Y. Chen, H.H. Li, C. Wu, C. Song, S. Li, C. Min, H.-P. Cheng, W. Wen, X. Liu,
Neuromorphic computing’s yesterday, today, and tomorrowan evolutional view,
Integr. VLSI J. 61 (2018) 49–61.

[2] W. Wen, C.-R. Wu, X. Hu, B. Liu, T.-Y. Ho, X. Li, Y. Chen, An EDA framework for
large scale hybrid neuromorphic computing systems, in: ACM/IEEE Design
Automation Conference (DAC), 2015, pp. 1–6.

[3] Q. Xu, S. Chen, B. Yu, F. Wu, Memristive crossbar mapping for neuromorphic
computing systems on 3D IC, in: ACM Great Lakes Symposium on VLSI (GLSVLSI),
2018, pp. 451–454.

[4] S. Acciarito, A. Cristini, G. Susi, et al., Hardware design of lif with latency neuron
model with memristive stdp synapses, Integr. VLSI J. 59 (2017) 81–89.

[5] Z. Li, C. Liu, Y. Wang, B. Yan, C. Yang, J. Yang, H. Li, An overview on memristor
crossabr based neuromorphic circuit and architecture, in: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SOC), 2015, pp. 52–56.

[6] C.-R. Wu, W. Wen, T.-Y. Ho, Y. Chen, Thermal optimization for memristor-based
hybrid neuromorphic computing systems, in: IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 2016, pp. 274–279.

[7] J. Cui, Q. Qiu, Towards memristor based accelerator for sparse matrix vector
multiplication, in: IEEE International Symposium on Circuits and Systems (ISCAS),
2016, pp. 121–124.

[8] W. Huangfu, L. Xia, M. Cheng, X. Yin, T. Tang, B. Li, K. Chakrabarty, Y. Xie, Y.
Wang, H. Yang, Computation-oriented fault-tolerance schemes for RRAM
computing systems, in: IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2017, pp. 794–799.

[9] L. Xia, M. Liu, X. Ning, K. Chakrabarty, Y. Wang, Fault-tolerant training with
on-line fault detection for rram-based neural computing systems, in: ACM/IEEE
Design Automation Conference (DAC), vol. 33, 2017.

[10] B. Yuan, B. Li, T. Weise, X. Yao, A new memetic algorithm with fitness
approximation for the defect-tolerant logic mapping in crossbar-based
nanoarchitectures, IEEE Trans. Evol. Comput. 18 (2014) 846–859.

[11] O. Tunali, M. Altun, Logic synthesis and defect tolerance for memristive crossbar
arrays, in: IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
2018, pp. 425–430.

[12] Y. Su, W. Rao, An integrated framework toward defect-tolerant logic
implementation onto nanocrossbars, IEEE Trans. Comput. Aided Des. Integr
Circuits Syst. 33 (2014) 64–75.

[13] O. Tunali, M. Altun, A fast logic mapping algorithm for multiple-type-defect
tolerance in reconfigurable nano-crossbar arrays, IEEE Trans. Emerg. Top. Comput.
(2017), https://doi.org/10.1109/TETC.2017.2755458.

[14] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, L. Jiang, Accelerator-friendly
neural-network training: learning variations and defects in RRAM crossbar, in:
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), 2017, pp.
19–24.

[15] C. Liu, M. Hu, J.P. Strachan, H. Li, Rescuing memristor-based neuromorphic
design with high defects, in: ACM/IEEE Design Automation Conference (DAC),
2017, pp. 1–6.

[16] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, V.S. Sathe, Energy-efficient neural
network acceleration in the presence of bit-level memory errors, IEEE Trans.
Circuits Syst. I (2018) 1–14.

[17] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang, H. Yang,
Stuck-at fault tolerance in RRAM computing systems, IEEE Journal on Emerging
and Selected Topics in Circuits and Systems (JETCAS) 8 (2018) 102–115.

[18] Y. Wang, W. Wen, L. Song, H.H. Li, Classification accuracy improvement for
neuromorphic computing systems with one-level precision synapses, in: IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), 2017, pp.
776–781.

[19] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized Neural
Networks: Training Deep Neural Networks with Weights and Activations
Constrained to 1 or -1, 2016. arXiv preprint arXiv:1602.02830.

[20] O. Tunali, M.C. Morgul, M. Altun, Defect-tolerant logic synthesis for memristor
crossbars with performance evaluation, IEEE Micro 38 (2018) 22–31.

[21] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z.
Wang, et al., Efficient and self-adaptive in-situ learning in multilayer memristor
neural networks, Nat. Commun. 9 (2018) 2385.

[22] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu, F.T. Chen,
RRAM defect modeling and failure analysis based on march test and a novel
squeeze-search scheme, IEEE Trans. Comput. (2014) 1.

[23] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, H. Yang, RRAM-based analog approximate
computing, IEEE Trans. Comput. Aided Des. Integr Circuits Syst. 34 (2015)
1905–1917.

[24] S. Kannan, J. Rajendran, R. Karri, O. Sinanoglu, Sneak-path testing of
crossbar-based nonvolatile random access memories, IEEE Trans. Nanotechnol. 12
(2013) 413–426.

[25] S. Chen, T. Yoshimura, Fixed-outline floorplanning: enumerating block positions
and a new objective function for calculating area costs, IEEE Trans. Comput. Aided
Des. Integr Circuits Syst. 27 (2008) 858–871.

[26] R.C. Dubes, A.K. Jain, Algorithms for Clustering Data, Prentice Hall Englewood
Cliffs, New Jersey, 1988.

[27] S. Salvador, P. Chan, Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. IEEE International Conference on Tools with
Artificial Intelligence, 2004, pp. 576–584.

[28] O. Tunali, M. Altun, Permanent and transient fault tolerance for reconfigurable
nano-crossbar arrays, IEEE Trans. Comput. Aided Des. Integr Circuits Syst. 36
(2017) 747–760.

[29] O. Tunali, M. Altun, A survey of fault-tolerance algorithms for reconfigurable
nano-crossbar arrays, ACM Comput. Surv. 50 (2018) 79.

[30] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
NP-Completeness, WH Freeman and Company, San Francisco, 1979.

[31] J. Munkres, Algorithms for the assignment and transportation problems, J. Soc.
Ind. Appl. Math. 5 (1957) 32–38.

[32] Gurobi Optimization Inc., Gurobi optimizer reference manual. http://www.gurobi.
com, 2014.

[33] B. Liu, Y. Chen, B. Wysocki, T. Huang, The circuit realization of a neuromorphic
computing system with memristor-based synapse design, in: Springer International
Conference on Neural Information Processing (ICONIP), 2012, pp. 357–365.

[34] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: Conference on Neural Information Processing
Systems (NIPS), 2012, pp. 1097–1105.

79

https://doi.org/10.1016/j.vlsi.2019.09.008
https://doi.org/10.1016/j.vlsi.2019.09.008
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref1
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref2
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref3
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref4
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref5
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref6
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref7
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref8
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref9
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref10
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref11
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref12
https://doi.org/10.1109/TETC.2017.2755458
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref14
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref15
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref16
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref17
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref18
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref19
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref20
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref21
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref22
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref23
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref24
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref25
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref26
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref27
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref28
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref29
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref30
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref31
http://www.gurobi.com
http://www.gurobi.com
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref33
http://refhub.elsevier.com/S0167-9260(19)30329-3/sref34

	Fault tolerance in memristive crossbar-based neuromorphic computing systems
	1. Introduction
	2. Preliminaries
	2.1. Neural network
	2.2. Fault models in memristor
	2.3. Problem formulation

	3. Fault tolerant framework for NCS
	3.1. Network partitioning
	3.2. Memristive crossbar configuration
	3.3. ILP based mapping
	3.4. Heuristic mapping

	4. Experimental results
	4.1. Effectiveness of fault tolerant framework
	4.2. Comparison with previous works

	5. Conclusion
	Acknowledgment
	Appendix A. Supplementary data
	References


