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Abstract. Optical proximity correction (OPC) is one of the most important techniques in today’s optical lithog-
raphy-based manufacturing process. Although the most widely used model-based OPC is expected to achieve
highly accurate correction, it is also known to be extremely time-consuming. This paper proposes a regression
model for OPC using a hierarchical Bayes model (HBM). The goal of the regression model is to reduce the
number of iterations in model-based OPC. Our approach utilizes a Bayes inference technique to learn the opti-
mal parameters from given data. All parameters are estimated by the Markov Chain Monte Carlo method.
Experimental results show that utilizing HBM can achieve a better solution than other conventional models,
e.g., linear regression-based model, or nonlinear regression-based model. In addition, our regression results
can be used as the starting point of conventional model-based OPC, through which we are able to overcome
the runtime bottleneck. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.15.2.021009]
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1 Introduction

Although several types of emerging lithography techniques,
e.g., extremely ultraviolet lithography,' electron beam lithog-
raphy,” nano-imprint lithography (NIL),® and directed self-
assembly lithography,* are being developed, optical lithog-
raphy is still widely used in the semiconductor industry in
view of its cost.’ In the optical lithography-based manufac-
turing process, optical proximity correction (OPC) is one of
the most important techniques.® Figure 1 shows an overview
of the most widely used model-based OPC in which the
displacements of fragmented edges in a mask layout are cal-
culated based on a lithography simulation so that the differ-
ence between target edge and simulated image can be
minimized.” Although this method is expected to achieve
highly accurate correction, it is also known to be extremely
time-consuming. To resolve this issue, several fast mask opti-
mization methods, such as inverse lithography, linear regres-
sion-based OPC, and nonlinear regression-based OPC, have
been proposed.®!!

The inverse lithography technique is expected to obtain a
highly accurate prediction model because the ideal mask
shape is derived from inverse transformation of the desired
resist image on a wafer. However, this method cannot be
applied to full-chip calculation owing to huge computational
cost.® Meanwhile, from the viewpoint of runtime, regression-
based methods can be promising candidates to reduce the
runtime of model-based OPC, because the displacements of
fragmented edges in a layout are quickly estimated through a
comparatively simple regression model, which is trained
with supervised displacement data calculated by the conven-
tional model-based OPC technique. Since these methods use

*Address all correspondence to: Tetsuaki Matsunawa, E-mail: tetsuaki.
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a straightforward regression technique, they are capable to be
applied to full-chip calculation. Conventional regression-
based methods, however, have several issues in terms of pre-
diction accuracy.

A linear regression-based OPC method is proposed by Gu
and Zakhor” and it showed the capability of reducing OPC
runtime by using the regression results as a start point of
model-based OPC. Also, nonlinear regression-based OPC
methods using support vector machine or artificial neural
network (ANN) are presented'®!! and showed the possibility
of runtime reduction against model-based OPC. However, it
is challenging to train a robust regression model owing to the
over-fitting problem, whereby a model has poor predictive
performance. Furthermore, as device feature sizes continue
shrinking, it is increasingly difficult to achieve a highly accu-
rate prediction model owing to the model complexity, since
the correction amounts for edge displacements greatly vary
in accordance with the surrounding environment of frag-
mented edges and optical proximity effects (OPEs). In order
to overcome these problems that inhibit the practical use of
regression-based methods, this paper proposes a new regres-
sion-based OPC framework. We develop a hierarchical
Bayes model (HBM) to achieve a robust prediction model
while preventing the over-fitting issue. Moreover, we pro-
pose a new layout representation technique to improve the
prediction accuracy.

The remainder of this paper is organized as follows:
Sec. 2 presents the background of this work by referring to
conventional regression-based OPC approaches. Section 3
gives the problem formulation and the overall flow of the
proposed method. Section 4 discusses the proposed layout
feature extraction technique. Section 5 describes the HBM
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without OPC
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Fig. 1 Optical proximity correction.

training method. Section 6 presents the experimental results,
followed by the conclusion in Section 7.

2 Preliminaries

Several regression-based OPC methods have been proposed
and shown to be effective for reducing the runtime of model-
based OPC. However, as layout features become compli-
cated in the future technology nodes, it is difficult to
learn a highly accurate prediction model using straightfor-
ward linear regression technique. Specifically, in the linear
regression-based OPC,’ the following simple linear model
involves a linear combination of the input layout feature
vectors.

Y(X, W) = wy +wix;+ - +wpxp, ¢))

where D is the number of dimensions of feature vectors x
described as x = (x;,...,xp)T, w= (wg,...,wp)T, and
wy is the bias parameter. The details of the feature are
described in Sec. 5. The coefficients of this model w can
be written by using the following normal equations in
which w are derived so that the difference between a pre-
dicted edge displacement and a supervised data is mini-
mized.

w = (XTX)" !XTy, (2)

where X is the design matrix, whose elements are given by
X = (xi,...,Xy)T, N is the total number of supervised data
samples, and y = (y;,...,yy)T are the target vectors corre-
sponding to the edge displacements obtained by model-
based OPC. Although the least square method is applicable
to uncomplicated regression problems, it includes the follow-
ing two disadvantages: (1) Over-fitting: model learning with
limited samples or nonrepresentative samples causes over-
fitting or overgeneralization that lowers predictive perfor-
mance of the regression model. (2) Limited applications:
it is difficult to apply the linear regression method to com-
plex nonlinear phenomena because the algorithm includes a
linear assumption in which all model parameters are linearly
correlated with input feature vectors.

To model complex nonlinear problems, several nonlinear
regression techniques based on ANN or support vector
regression (SVR) have been proposed.'®!" These related
works showed that it is possible to model nonlinear problems
through mechanisms of interconnected neurons'® or kernel
methods.!! However, the over-fitting issue is still open
since a sufficient amount of supervised data is not neces-
sarily given in all cases. Furthermore, practical applications
of the regression model are also restricted even with
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Fig. 2 Examples of edge types.

nonlinear algorithms because there are relatively few
adjustable model parameters that can improve predictive
performance.

On the one hand, OPEs from adjacent patterns contribute
to one of the factors that increases difficulty of model train-
ing. This is because the tendency of displacement of mask
edges differs among different types of edges.” Figure 2
shows examples of edge types including normal edge, con-
vex edge, concave edge, or line end edge. The difference of
edge types leads to different displacement amounts. In the
linear regression-based OPC,’ an accurate regression model
is realized by separately learning a regression model per edge
type. Since the separate model requires a larger number of
supervised data, this approach also faces the over-fitting
issue. A new efficient regression algorithm is required to
realize flexible modeling for complex phenomena consisting
of a small number of data.

3 Problem Formulation and Overall Flow

3.1 Problem Formulation

To evaluate the performance of regression-based OPC, we
define the RMSE as follows:

Definition 1 (root mean square error: RMSE).

N (y — 52
Do (y;v i) , 3)

RMSE =

where N is the total number of supervised data samples, y; is
the fragment movement on i’th edge determined by model-
based OPC and y is the predicted fragment movement.

We give the problem formulation of regression-based
OPC as follows:

Problem 1 (regression-based OPC). Given layout data
including the displacement amount of all fragments, a regres-
sion model is calibrated to predict displacements of unknown
fragments in a verification layout. The goal of the regression-
based OPC is to minimize the RMSE.

3.2 Overall Flow

Our regression-based OPC method consists of two phases, a
learning phase and a testing phase as shown in Fig. 3. In the
beginning of the learning phase, a training layout data is
given.

Then based on a design rule check (DRC), all the edges of
the training layout are fragmented into different types, such
as normal edge, convex edge, concave edge, and line end
edge (see Fig. 2). After recognizing these different types,
the displacement amount of each fragment is computed
by using the conventional model-based OPC technique as
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Fig. 3 Overview of the proposed method.

a supervised data. Meanwhile, layout features in each frag-
mented edge are extracted as described in Sec. 5. Finally, a
prediction model is trained using the supervised displace-
ment data obtained by model-based OPC and the extracted
layout features.

In the testing phase, a verification layout data is used as an
input. Based on the DRC in the learning phase, all edges of
the layout are fragmented and edge types are recognized as
well. After layout feature extraction, the edge displacements
in the verification layout are predicted by the model trained
in the learning phase.

4 Feature Extraction

In this section, we discuss a layout feature extraction method
for OPC regression. In a prediction model, the input layout is
difficult to be directly handled, owing to its high-dimensional
space. Therefore, the geometrical information of each frag-
mented edge is encoded into a feature vector. For instance,
assuming there are 0.6 ym?> areas on 1 nm grid to consider
edge displacement of a pattern, the number of dimensions of
the pattern becomes 600 X 600. In this kind of high-dimen-
sional space, R309000 it is difficult to prepare a sufficient
number of supervised samples and solve the regression prob-
lem within a practical time.

Layout feature extraction is a very important procedure in
the regression-based OPC because the prediction model per-
formance is heavily determined by the types of layout fea-
tures. Recently, concentric square sampling (CSS)’ has been
proposed as an OPC modeling feature and showed reason-
able prediction accuracy. In this paper, we propose a new
layout feature extraction method, concentric circle area sam-
pling (CCAS), for further improvement of OPC regression.
In the following, we first present an overview of the CCS and
then our proposed CCAS is introduced.

4.1 Concentric Square Sampling

CSS’ is proposed in the linear regression-based method to
train a linear model for OPC regression. A feature vector
X contains subsampled pixel values on concentric squares
of layout patterns. Figure 4(a) shows the basic concept of
CSS of F-shaped test pattern. Parameters of a feature consist
of the total size of the encoding area / and the sampling den-
sity controlling parameter r;,. The radius of the concentric
square is 04,8, -+, rin, rin + 8, 7in + 16, ---, /2 pixels,
respectively. The total number of dimensions will be 257
if the parameters [/ and r;, are 0.4 ym and 60 nm, respec-
tively. It can be expected to achieve a high generalization
capability because the feature can correctly express a posi-
tional relationship to layout patterns. Although CSS can
reduce the number of dimensions compared to exploring
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Fig. 4 Layout features: (a) CSS and (b) CCAS.

all pixel values in the layout patterns, prediction model train-
ing might remain difficult because the number of dimensions
is still high.

4.2 Concentric Circle Area Sampling

This feature is first presented in this paper and represents
pattern information that affects propagation of diffracted
light from a mask pattern. Figure 4(b) shows the basic con-
cept of CCAS of F-shaped test pattern. Parameters of a fea-
ture consist of the total size of the encoding area / and the
sampling density controlling parameter r;,. Although at first
glance the basic concept is almost the same as that of CSS,
CCAS can be expected to achieve a better generalization
capability than CSS. The reason is that the subsampled
pixel values in CCAS correspond to important physical phe-
nomena, in which diffracted light from a mask pattern is
propagated concentrically. This feature can also improve
the expressive capability of a layout by sampling not only
pixel values but by summation of pixels around the sampling
area. In Sec. 6 we will further analyze the advantages of this
feature, and compare it with the conventional CSS.

5 Optical Proximity Correction Methodologies

In this section, we present a model training approach includ-
ing a concept of HBM and a Markov Chain Monte Carlo
technique. The principal difference between our approach
and the conventional linear regression model is that our
model is not restricted by linear correlation of model param-
eters. This indicates that it is expected to realize flexible
modeling even of a complicated phenomenon having a large
variation in input data or including unknown variables that
cannot be measured. In this subsection, we present the
concept of the proposed OPC regression, followed by the
solution of the parameter estimation technique.

5.1 Hierarchical Bayes Model

As mentioned in Sec. 2, the edge displacements vary depend-
ing on edge types, such as normal edge, convex edge, con-
cave edge, and line end edge. To simulate the trend of edge
displacement, our proposed model considers the regression-
based OPC problem with a generalized linear mixed model
(GLMM) regarding the edge types as random effects that can
express an effect of variance of supervised data. In addition,
the GLMM is modeled by a Bayesian approach to deal with
many random effects. Figure 5 shows the basic concept of
our proposed model where data, edge displacement, follows
the Normal distribution of center y and variance o,. The
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Fig. 5 Concept of the proposed HBM.

model parameters wy;, V j € D correspond to fixed effects
that are the common effects for all edges. w,;, V j € D indi-
cate random effects that are identification effects assigned to
edge types. o, and o, are the variances of fixed effects and
random effects, respectively. Although the Bayes inference
technique requires some prior information, it is not provided
in many practical cases. We therefore propose a regression
model using noninformative prior distribution for unknown
variables. Finally, our proposed model can be written as
follows:

p(y[x.0) = N(y(x.0).0y). @
D

y(x,0) = We, W + Z(ij + er)xj, (&)
=

where p(y|x,0) is the probability of edge displacements y
given feature vectors X and model parameters 8, N is the nor-
mal distribution of center y and variance o, and D is the total
number of dimensions. The prior distributions are defined as
follows:

wy, ~N(0,04), (6)
w, ~N(0.,), )
o, ~U(0, 10%), @®)

where N (0, 6) is the normal distribution of center 0 and vari-
ance o, and U(0, 10*) is the uniform distribution in the inter-
val (0, 10%). Because our model assumes there is no prior
knowledge about the variances of prior distributions, the
model utilizes hierarchical prior distributions as noninforma-
tive hyper-priors to consider every possibility of unknown
parameters.

oy ~U0,10%), ©)

o, ~U(0, 10%). (10)

The noninformative hyper-priors that follow the uniform
distribution in the interval (0, 10*) indicate that the variance
can take any values within the range of 0 and 10*. Finally,
the posterior distribution is derived as follows:
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= [T 7000wy lor)p 0w, o) p(0,) (o) (o)),

L

where N is the total number of samples, and 6 include all
model parameters, such as fixed effects, random effects, vari-
ance of y, and variances of fixed effects and random effects.
Because the posterior distribution includes hierarchical prior
distributions, this model is called the HBM. It is difficult to
solve all parameters using the likelihood estimation method
owing to the complexity of integral computation. Therefore,
we estimate all parameters using a sampling technique.

5.2 Markov Chain Monte Carlo

MCMC is a method of estimating model variables by sam-
pling parameters from a posterior distribution, or a parameter
distribution proportional to the likelihood. Generally, it is
difficult to apply a likelihood estimation method, which is
a method of estimating model variables that maximizes
the likelihood function, to a complicated model such as
Eq. (11) because the method must compute the likelihood
in the combination of all model parameters. In contrast, it
can be expected that appropriate parameters can be obtained
by MCMC since the estimation performance is less suscep-
tible to the model complexity.'?

We briefly describe the flow of MCMC as follows. In this
algorithm, a target distribution z(8), a distribution of model
parameter 6, can be obtained from a probability distribution
q(0’) called the proposal distribution. The model parameters
are estimated by the following steps: suppose the target dis-
tribution z(6|x) of parameter 0 given data x, where 6 =
(6y,...,0,,) and m is the total number of parameters. We

first give the initial values of 6 as 00 = (9(1()), .. ,9;?)),
where 0 indicates a random variable at a time point 7.
Then, we repeat the following steps for t = 0,1,...,k:

1. Give the initial variables 0© = (6\”, ... o).
2. Repeat sampling for t =0.,1,... k.

a. Generate 6 from ¢(6’, 6 |x).

b. Generate u from 2/(0,1) and select 9*+!) based on
the following equation:

P+ — {9/’ if u<a(0",0)x),

12
01, otherwise, (12

where U(0,1) is the uniform distribution in the
interval (0, 1), a is the selection rate defined by

/ 1 (1)
a(6), 0|x) = min{l, 7(0'1x)q(6", 0" ]x) }
z(091x)q (6", 0'|x)

13)

This is known as the Metropolis—Hastings algorithm. '
Since MCMC requires many iterated calculation to sample
stable parameters, evaluating convergence of MCMC is
important for measuring the performance of estimated sam-
ples. To monitor the convergence of MCMC, this paper uses
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R index, which is proposed by Gelman and Rubin."? This can
be computed based on the variance in the Markov chains and
defined as follows:

=

(14)

P -1 1

where k is the number of iterations, B is the between-chain
variance and W is the within-chain variance defined by

k m
IR &

Jj=1

1 m k
W= s { DL } (17

i=1

where m is the number of chains and y is the sampled param-
eter. It is shown that R can evaluate the convergence of the
samphng results in actual problems.'* Empirically, if every R
is smaller than 1.1, it can be concluded that the sampling
results are fully converged.14

MCMC can estimate reasonable model parameters even
in high-dimensional parameter space by constructing a
Markov chain. Furthermore, model parameters are estimated
without a local solution because of a stochastic process even
if the likelihood functions include multi-peak distributions.
Therefore, it can be expected that the parameter distributions
nearly equaling to the true distributions are obtained by iter-
ative sampling.

6 Experimental Results

The proposed methodologies are implemented in C++ and
Python on a Linux machine with eight 3.4 GHz CPUs
and 32 GB memory. Calibre!” is used to perform lithography
simulation with wavelength A = 193 nm and NA = 1.35.
Two 32 nm node industrial chips in metal routing layer, lay-
out A and layout B, are applied in the experiment. The areas
of the layouts A and B are 9291.37 ym? and 11702.20 ym?,
respectively. In the following, we conduct four experiments
related to feature selection, model training, comparison with
linear/nonlinear regression, and comparison of model-
based OPC.

6.1 Feature Selection

In the first experiment, we evaluate the effectiveness of the
proposed layout feature extraction. We compare the RMSE
values of the proposed CCAS feature and the CSS feature’
on a testing layout with different feature parameters. Here,
linear regression algorithm is selected as the regression
model, which is trained with a part of supervised data includ-
ing all edge types and consists of 5000 random samples from
the training layout A. The RMSEs (nm) on the testing layout
are computed using 5000 samples extracted from the layout
B. Figure 6 compares RMSE values, where parameter ry, is
ranging from 50 to 500 nm, and parameter / is set to 1.0 ym.
Figure 7 compares RMSE values, where parameter / is rang-
ing from 0.5 to 1.4 (um), and parameter ry, is set to 150 nm.
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Fig. 6 Comparison between CCAS and CSS on different parameter
rin (I=1.0 um).

From Figs. 6 and 7, we can see that the model trained by
the proposed CCAS can always achieve less RMSE values.
That is, the CCAS feature shows a better predictive perfor-
mance than the CSS feature. Therefore, in the following
experiments we set /[ = 1.0 um and r;; = 150 nm, which
can provide the best prediction accuracy.

6.2 Sampling Results

In the second experiment, we train the proposed HBM for
OPC regression Eq. (11). As mentioned in Sec. 5, HBM
includes many parameters. Here the layout pattern is
sampled 2.5 nm/1 pixel resulting in 400 x 400 pixel binary
map to fit the grid size of the optical model. Since the total
number of dimensions is 257, there are 1293 parameters in
total, e.g., 258 fixed effects including bias parameter wy,
1032 (258 X 4) random effects including bias parameters
Wy, tWO hierarchical hyper-priors Gy, O, and one variance
in normal distribution o,. All parameters are estimated
using the MCMC algorithm described in Sec. 5. For the
MCMC parameters, we set the number of iterations to 5000,
the number of chains to four, the burn-in number to half of
the iterations, and the amount of thinning to 10. Since it is
difficult to introduce all estimation results, we only show the
results of hierarchical parameters peculiar to HBM, o and
o,, as shown in Fig. 8. In this figure, some of the sampling
results are shown on the left, and the estimated probability
density functions of sampled parameters are indicated on
the right.

Although the sampling results of random effects are sim-
ilar, they are far from being the same. The result shows that
there is a clear difference among edge types and these hidden
relationships can be estimated by HBM without any prior
knowledge. Furthermore, the figure indicates that the param-
eters are well converged because all R are less than 1.1.

T
438 CSS —x— |

46 - 4
44 L 4

RSMEs

I I I I I I I I I I
05 06 07 08 09 1 11 12 13 14

1(um)

Fig. 7 Comparison between CCAS and CSS on different parameter /
(rin = 150 nm).
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Fig. 8 Sampling results of hidden variables. R values of o, o,(normal), ¢,(convex), o,(concave), and
o,(line-end) are 1.09, 1.01, 0.99, 0.98, and 1.00, respectively.

6.3 Comparison with Linear Regression and
Nonlinear Regression

In the third experiment, we compare the proposed HBM with
linear regression method and nonlinear regression method,
respectively. A SVR algorithm is implemented as the non-
linear regression method. For both linear and nonlinear
regression methods, we consider two sample sets, unified
sample set (labeled as “all”’) and separated sample set
(labeled as “sep”). The reason is that separate sample set
may have better predictive performance than a unified sam-
ple set.” The proposed HBM method utilizes a unified sam-
ple set. For each regression method, Tables 1 and 2 list the
predictive RMSE values on training layout and testing
layout, respectively.

From Table 1, we can see that the SVR model, which is a
nonlinear regression, has relatively better RMSE for training
data set compared with other algorithms. However, from
Table 2 we can see that it is difficult to achieve high pre-
diction accuracy for unknown data with the nonlinear
model, which indicates a typical over-fitting issue. Our

Table 1 RMSE comparison on training layout.

proposed HBM achieves the best prediction accuracy in
testing layout.

We further compare the difference of prediction accuracy
between HBM and the linear regression model when the
training sample number is changed. As shown in Fig. 9,
in the linear regression model, the prediction accuracy dras-
tically deteriorates if the number of training data decreases.
In contrast, HBM can prevent degradation of prediction
accuracy even with small numbers of training data. The rea-
son is that HBM learns hidden variables corresponding to
variance components included in given data. From the above
results, we can get the conclusion that, through using HBM it
is possible to achieve a robust OPC regression model with
good predictive performance even when the number of sam-
ples is relatively small.

In the comparison experiment in Fig. 9, calibration times
on single core for all, middle, and small models are 46 (min),
106 (h), and 613 (h), respectively. It should be noted that
although HBM calibrations take a lot of time since the
method uses a scheme of MCMC, prediction time of HBM
is almost the same as the linear regression-based model.

Table 2 RMSE comparison on testing layout.

Edge type LR (al) LR (sep) SVR (all) SVR (sep) HBM Edge type LR (al) LR (sep) SVR (all) SVR (sep) HBM
All 3.575 3.154 0.518 0.506 3.179 All 3.701 3.664 8.875 7.424 3.492
Normal 2.852 2.696 0.534 0.534 2.703 Normal 2.888 2.778 6.765 6.361 2.747
Convex 5.109 4.460 0.505 0.429 4.466 Convex 5.566 5.166 10.419 9.744 5.114
Concave 5.166 3.667 0.150 0.150 3.860 Concave 5.172 4.670 6.506 6.497 4.380
Line end 4.666 3.428 0.511 0.509 3.581 Line end 4.697 6.262 20.088 11.252 4.980
Average 4.274 3.481 0.444 0.426 3.558 Average 4.405 4.508 10.530 8.256 4.143
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Fig. 9 Performance comparison on different training sample number.

6.4 Comparison with Model-based Optical Proximity
Correction

In this last experiment, we compare the proposed HBM
model with conventional model-based OPC. We measure
correction accuracy based on an edge displacement error
(EPE) distribution. Figure 10 shows the EPE distribution
comparison between the model-based OPC and the proposed
HBM. In the figure, the blue line, the green line with plus
marker and the red line with down triangle marker show
the EPEs at 2nd, 6th, and 10th iteration in model-based
OPC, respectively. The aqua line with x marker illustrates
the EPE distribution in the predicted results by HBM without
any model-based iteration.

Although HBM (aqua) result looks even better in terms of
std. and variation in Fig. 10, actually, MBi10 (red) has better
std. and variation than HBM (aqua). To make the conclusion
more clear, a subgraph is added to zoom into the scope with
negative EPE values. We can see that some predictions of
HBM have reverse direction, thus conventional model-
based OPC is still a must to achieve good OPC results.
The major reason of such reverse directionality is twofold.
(1) Layout feature: the proposed CCAS method has better
performance than conventional method. However, there is
a possibility that the CCAS is not necessarily appropriate
for representing layout characteristics. (2) Design of HBM:
there may be several hidden hyper-parameters which can

0.7 r
— MB_i2
~— MB_i6 ||
06 Loos v v—v MB_il0
»—= HBM
0.5 F0.04+ L 1
0.03F
o 0.4 [ 0.02}
§ 0,01}
03}
0.00
0.2+
0.1
0.0 ==
—15 -10 =5 0 5 10 15

EPE value

Fig. 10 EPE distributions.
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Table 3 Comparison with model-based OPC.

MB(i2) MB(4) MB(6) MB(8) MB(i10) HBM

Variance 71.094 52208 35.086 13.131 9.768 14.514

Std. dev. 8.432 7.226 5923 3.624 3.125 3.810

Mean -3.036 -2214 -1521 -0507 0.216 -0.196

Median  -0.292 -0.329 -0.250 -0.158 0.039 0.000

control other unknown variations in hierarchical Bayes mod-
eling. These are subjects for future works.

Table 3 lists the comparison of variance, std. dev., mean,
and median between model-based OPC and our regression
model. From the table, we can see that the regression results
by HBM can achieve almost the same variance as the result
of 8th iteration in model-based OPC. This indicates that the
number of iterations can be reduced to two by using the
regression results as an initial input of model-based OPC.
Furthermore, since the regression model achieves the best
mean and median EPEs, further improvement of prediction
accuracy can be expected by adding several hidden variables
to HBM, tuning MCMC parameters or adjusting model-
based OPC recipe.

Figure 11 shows OPC results on a one-dimensional lay-
out. The gray features are the target pattern. The red line and
the blue line indicate the model-based OPC result (after 10
iterations) and our proposed HBM-based OPC result, respec-
tively. From the figure, we can see that the OPC outputs are
very similar for both methods.

Figure 12 further shows several OPC results on two-
dimensional layouts. We can see that even for complex
two-dimensional layouts, the proposed HBM-based OPC
can achieve very comparable solutions against conventional
model-based OPC. In the figure, overlapping contours are
not shown to easily recognize a difference of edge move-
ments between model-based OPC and HBM. It should be
noted that several predictions have reverse direction in
Figs. 12(c) and 12(d). This result and the discussions on
EPE distributions (see Fig. 10) show that there is still room
for improvement of prediction accuracy by designing more
hidden hyper-parameter which controls unknown effects
from adjacent edges.

Fig. 11 OPC results on a one-dimensional layout: the red line is
model-based OPC, while the blue line is HBM-based OPC.
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Fig. 12 OPC results on two-dimensional layouts: the red line is model-based OPC, while the blue line is
HBM-based OPC. (a) pattern 1, (b) pattern 2, (c) pattern 3, and (d) pattern 4.

7 Conclusions

This paper proposes a new regression-based OPC technique
based on a HBM. By applying HBM, flexible modeling is
realized without being restricted by linearity of model
parameters or the number of supervised samples, which
can improve predictive performance of a regression model
with a small number of data. Markov Chain Monte Carlo
is able to estimate all model parameters including unknown
variables that correspond to variance components included in
given data. The experimental results show that the proposed
HBM can achieve very comparable results with MB(8),
which means the first eight iterations can be replaced by
the proposed HBM. Then the iteration number of conven-
tional MBOPC can be reduced from ten to two. In other
words, our method is promising to dramatically reduce
the cost of process development.
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