
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Solid-State Circuit Design-Architecture, Circuit, Device and Design Methodology

Application-Specific Network-on-Chip Synthesis: Cluster
Generation and Network Component Insertion∗

Wei ZHONG †a), Nonmember, Yoshimura TAKESHI †, Fellow, Bei YU††, Nonmember, Song CHEN†,
Sheqin DONG†††, Members, and Satoshi GOTO†, Fellow

SUMMARY Network-on-Chips (NoCs) have emerged as a paradigm
for designing scalable communication architecture for System-on-Chips
(SoCs). In NoC, one of the key challenges is to design the mostpower-
performance efficient NoC topology that satisfies the application charac-
teristics. In this paper, we present a three-stage synthesis approach to
solve this problem. First, we propose an algorithm [floorplanning inte-
grated with cluster generation (FCG)] to explore optimal clustering of cores
during floorplanning with minimized link and switch power consumption.
Then, based on the size of applications, an Integer Linear Programming
(ILP) and a heuristic method (H) are also proposed to place switches and
network interfaces on the floorplan. Finally, a power and timing aware
path allocation algorithm (PA) is carried out to determine the connectivity
across different switches. Experimental results show that, compared with
the latest work, for small applications, the NoC topology synthesized by
FIP (FCG+ILP+PA) method can save 27.54% of power, 4% of hop-count
and 66% of running time on average. And for large applications, FHP
(FCG+H+PA) synthesis method can even save 31.77% of power, 29% of
hop-count and 94.18% of running time on average.
key words: networks on chips, floorplanning, topology synthesis

1. Introduction

Network-on-Chips (NoCs) have been proposed as a solu-
tion for addressing the global communication challenges
in System-on-Chip architectures that are implemented in
nanoscale technologies [1] [2]. In NoCs, the communi-
cation among various cores is achieved by on-chip micro-
networks components (such as switches and network inter-
faces) instead of the traditional non-scalable buses. Com-
paring with bus-based architectures, NoCs have better mod-
ularity and design predictability. Besides, the NoC approach
offers lower power consumption and greater scalability.

NoCs can be utilized as regular or application-specific
network topologies, as shown in Fig.1. For regular NoC
topology design, some existing NoC solutions assume a
mesh based NoC architecture [3] [4], and their focus is
on the mapping problem. Regular NoC architectures of-

Manuscript received July 17, 2011.
Manuscript revised September 0, 2011.
†The authors are with the Graduate School of Information Pro-

duction and Systems, Waseda University, Kitakyushu, Japan.
††The author is with the Department of Electrical and Computer

Engineering, The University of Texas at Austin, Austin, USA.
†††The author is with the Department of Computer Science &

Technology, Tsinghua University, Beijing, China.
∗This paper was presented at the IEEE International Sympo-

sium on Quality Electronic Design (ISQED), Santa Clara, CA,
USA, 2011.

a) E-mail: E-mail: wzhong@ruri.waseda.jp
DOI: 10.1587/transele.E0.C.1

Fig. 1 Two types of NoCs. (a) Regular NoCs. (b) Application-specific
NoCs.

fer lower design time, and are useful when implemented
in a generic multiprocessor environment such as the MIT
RAW [5]. On the other hand, for application-specific NoC
topology design, the design challenges are different in terms
of irregular core sizes, various core locations, and differ-
ent communication flow requirements [6] [7] [8] [9]. Most
SoCs are typically composed of heterogeneous cores and
the core sizes are highly non-uniform. The application-
specific NoC architecture with structured wiring, which sat-
isfies the design objectives and constraints, is more appro-
priate. The application-specific NoC architecture has been
demonstrated to be superior to regular architectures in terms
of power, area and performance [10]. This paper concen-
trates on the synthesis method of application-specific NoC
topologies.

A NoC with fewer switches will lead to longer core
to switch links, causing higher link power consumption.
On the other hand, when many smaller switches are used,
the flows have to traverse more switches, leading to larger
switch power consumption. Thus, for the NoC topology
synthesis procedure, proper switch number needs to be de-
termined, which will have a large influence on the total
power consumption. Moreover, as the physical information
of cores and network components (such as switches and net-
work interfaces) also influence the link power consumption,
their positions should be considered during topology gener-
ation.

A lot of works have been done to synthesize the
application-specific NoC topology. In [6], a two-step topol-
ogy synthesis procedure is proposed. But as the min-cut
partition is carried out before floorplanning, physical infor-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x

Fig. 2 NoC Design Approach Overall

mation such as the distances among cores can not be taken
into consideration. In [7], two heuristic algorithms are pro-
posed to examine different set partitions. But the partition is
carried out only based on communication flow and a phys-
ical network topology has to be generated for each set par-
tition. In [8], a novel NoC topology generation algorithm
is presented, however their solutions only consider topolo-
gies based on a slicing structure where switch locations are
restricted to corners of cores. In [9] and [11], synthesis
approaches for designing power-performance efficient NoC
topology are proposed. But, physical locations of the cores
are assumed as inputs and in order to obtain the optimal
switch number, authors explore the designs with several dif-
ferent partition numbers. Moreover, as the switches located
by the authors resulting in overlaps with cores, they have
to reuse the floorplanner to remove the overlaps. In [12] a
partition-driven floorplaning algorithm is proposed. But the
authors assume optimal switch number is given as inputs,
and apply min-cut partitioning every iteration in simulated
annealing. Switch and network interface positions are lo-
cated separately and switches are inserted into whitespace
one by one. Besides, the authors use CBL [13] to repre-
sent floorplans, using lots of dummy blocks to ensure good
solutions, on penalty of longer running time.

In this paper, under the consideration of both communi-
cation requirements and physical information among cores,
partitioning is integrated into the floorplanning phase to ex-
plore the optimal switch number for clustering the cores
with minimized link and switch power consumption. Then,
an Integer Linear Programming (ILP) method is proposed
for small applications to determine the optimal positions
of the switches and network interfaces on the floorplan.
A heuristic method (H) is also proposed for large applica-
tions by applying a two-step insertion (ILP formulation for

Fig. 3 Floorplanning integrated with Cluster Generation (FCG)

switches and min-cost max-flow algorithm for network in-
terfaces) to locate positions with minimized link power con-
sumption. At last, a power and timing aware path allocation
algorithm (PA) [6] is carried out to determine the connectiv-
ity across the different switches which are free of deadlock.

The rest of this paper is organized as follows. Section
2 presents the approach used for topology synthesis. Sec-
tion 3 presents the FCG algorithm, which integrates parti-
tioning into floorplanning phase. Section 4 presents an ILP
formulation and a heuristic method to determine the posi-
tions of switches and network interfaces. Section 5 presents
the power and timing aware path allocation algorithm. Ex-
perimental results and conclusions are presented in Sections
6 and 7, respectively.

2. Design Approach

Fig.2 shows the approach used for NoC topology synthe-
sis. The input of the synthesis procedure is a Core Com-
munication Graph (CCG), which could be represented by a
directed graphG = (V,E). Each vertexvi ∈ V represents
a core and the edgeei j with the weightwi j represents the
communication requirement between coreci andc j . In the
core specification file, the name and size of different cores
are obtained as inputs. In addition, NoC design parameters
such as the NoC operating frequency and latency constraints
are obtained. For the synthesis procedure, the area, power
and timing models of the NoC switches and links are also
taken as inputs.

As the topology synthesis problem is NP-Hard [14],
we present efficient heuristics to synthesize the best topol-
ogy for the design. Floorplanning integrated with Clustering
Generation (FCG) integrates the partitioning and floorplan-
ning to explore the optimal clustering of cores with min-
imized power consumption. Then, an Integer Linear Pro-
gramming (ILP) and a heuristic method (H) are proposed to
place switches and network interfaces on the floorplan, so
that accurate power and delay can be obtained for the wires.

ZHONG et al.: APPLICATION-SPECIFIC NETWORK-ON-CHIP SYNTHESIS: CLUSTER GENERATION AND NETWORK COMPONENT INSERTION
3

At last, a path allocation algorithm (PA) [6] is carried out,
which takes linear combination of power consumption and
hop-count as objective, to determine the connectivity across
different switches.

The output of the synthesis procedure is an optimized
application-specific NoC topology with pre-determined
paths on network to route the traffic flows and the floorplan
result of cores, switches and network interfaces in the NoC
with minimized link and switch power consumption.

3. Floorplanning integrated with Cluster Generation
(FCG)

Fig.3 shows the flow of the proposed algorithm. The initial
solution of floorplan is generated by a fixed-outline floor-
planning tool IARFP [15], which drives the floorplan with
the objective evaluated by the linear combination of the
area costs and the wirelength. The stepInitial Partition-
ning will be generated based on the Core Communication
Graph (CCG) by a min-cut bi-partitioning algorithm and is
assumed as the input of the followingFloorplanning and
Clustering, which integrate the partitioning and floorplan-
ning to explore optimal clustering of cores with minimized
link and switch power consumption. After floorplanning,
the clusters with zero core will be ignored and the optimal
switch number and connectivity between cores and switches
will be determined.

In Fig.3, for the required operating frequency of the
NoC, the maximum size of the switchmax sw size is ob-
tained as an input.Initial Partitionning apply a recursive
min-cut bi-partitioning algorithm on CCG, according to the
communication requirements and physical locations of the
cores, until each cluster has the core number smaller than
max sw size. In partition, we define new edge weightw′i j in
CCG as:

w′i j = αw ×
wi j

maxw
+ (1− αw) ×

min dis
disi j

(1)

where wi j denotes communication requirement between
corei and corej, disi j denotes distance between corei and
j, maxw is the maximum communication requirement over
all flows andmin dis is minimum distance among cores.

This step is to generate an initial partition, ensuring
those cores with larger communication requirements and
less distances are assigned to the same cluster and using the
same switch for communication.

Once the initial partition is generated, the next step is
to explore optimal clustering of cores during floorplanning.
This step is carried out atSelect insertion point and cluster
for the removed core, and the flow is listed as follows:

a. Compute the floorplan of cores except the removed
one.

b. Enumerate possible insertion points based on the floor-
plan information obtained in stepa, and for each in-
sertion point, calculate the candidate cluster of the re-
moved core by rough power evaluation.

c. Select a fixed number of candidate insertion points
(CIPs) for the removed core by rough cost evaluations.

d. Choose for the removed core one of the candidate in-
sertion points selected in stepc, and assign the cluster
for the removed core.

In stepb, we useRk to represent the bounding resources
for cores in clusterk, andCk represents the set of cores inkth
cluster. So, if we insert the removed corecm into (x, y), we
first calculate the candidate cluster setCCSm(x, y), which
is composed of clusters whoseRk covered (x, y). This step
is used to ensure for every clusterk ∈ CCSm(x, y), the dis-
tance of the removed corecm to all the cores in clusterk will
be taken into a small range, hence can use the same switch
for communication. The rough power consumption ofcm to
clusterk (k ∈ CCSm(x, y)) can be calculated as:

Pm
k (x, y) =

∑

ci<Ck,i≤nc

cr corei,m ∗ (|xci − x| + |yci − y|) (2)

whereci denotes theith core,cr corei,m represents commu-
nication requirements between corecm andci , (xci , yci) is the
coordinate of coreci andnc represents the number of cores.
The rough power consumptionPm(x, y) can be evaluated as:

Pm(x, y) = min {Pm
k (x, y)},∀k ∈ CCSm(x, y) (3)

the clusterk (k ∈ CCSm(x, y)) with the smallestPm
k (x, y)

will be assumed as the candidate cluster of corecm for the
insertion point (x, y), denoted asCCm(x, y), and the corre-
spondingPm

k (x, y) will be evaluated as thePm(x, y) during
the rough cost evaluation in stepc.

In stepc, every insertion point in Sequence-Pair with
the corresponding (x, y) is evaluated by the linear combi-
nation of the area costs, wire length and rough power con-
sumptionPm(x, y) related to the removed corecm.

In stepd, we insert corecm into Sequence-Pair at each
CIP and evaluate all the CIPs selected in stepc accurately:

Φ = λaA+ λwW+ λpP+ λsS (4)

whereA represent area of the floorplan;W represent the total
wire lengths;P represent the total link power andS repre-
sents the switch size of candidate clusterk (k = CCm(x, y))
in CIP. The total link powerP can be evaluate as:

P =
∑

i≤nc

∑

j,i, j≤nc

cr corei, j ∗ (|xci − xc j | + |yci − yc j |) (5)

and S is involved to punish the cost if the clusterk with
its size bigger thanmax sw size, which can not support the
chip frequency. The parametersλa, λw, λp, λs can be used to
adjust the relative weighting between the contributing fac-
tors.

If the best one of CIPs shows an improvement, the cor-
responding insertion point (x, y) will be the new position of
the removed corecm, and its the candidate clusterCCm(x, y)
in CIP will include the corecm. Otherwise, an acceptable
probability will be calculated.

A simple example is shown in Fig.4. After the initial

4
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x

Fig. 4 Floorplan and clustering of cores. (a)Initial floorplan andpartition
for the cores. (b) Floorplan and bounding resources for clusters after core
c4 is removed.

Fig. 5 Candidate insertion points calculation. (a)Candidate cluster cal-
culation for the insertion point. (b) Fixed number of candidate insertion
points.

Fig. 6 Clustering of cores during floorplanning. (a)The best candidate
insertion point for the removed corec4. (b) Update the floorplan result and
bounding resources for clusters after insertion of the removed corec4.

floorplan and initial partition, six cores are placed on the
floorplan and partitioned into three clusters: cluster 1 with
the coresc1 andc3; cluster 2 with the coresc2 andc6; cluster
3 with the coresc4 andc5. We also calculate the bounding
resourcesRk for each clusterk, as shown in Fig.4a. Then
we explore optimal clustering of cores during floorplanning.
First, we remove a core (here we removec4) and compute
the floorplan of cores exceptc4. In this step, the bound-
ing resourcesR3 for cluster 3, which includes the removed
core c4, will not be changed, as shown in Fig.4b. Then,
we enumerate possible insertion points forc4, and calculate
the candidate cluster ofc4 for each insertion point by rough
power evaluation. In Fig.5a, the insertion point is covered
by R1 andR2, so the candidate cluster set ofc4 for this in-
sertion pointCCS4(x, y) includes cluster 1 and cluster 2.
Based on the evaluation model (2), we evaluate the rough
power consumption ofc4 to cluster 1 and cluster 2, and the
cluster with smaller rough power consumption will be as-
sumed as its candidate cluster at this insertion point (here

we assume as cluster 1). Then a fixed number of candi-
date insertion points with the corresponding clusters for the
removed corec4 are selected by rough cost evaluations, as
shown in Fig.5b. Lastly, we insert the removed corec4 into
Sequence-Pair at each candidate insertion point and evalu-
ate them accurately, using (4). If the best candidate insertion
point shows an improvement, it will be the new position of
the removed corec4. As shown in Fig.6, the removed core
c4 is inserted into its best candidate insertion point on the
floorplan and included by the corresponding candidate clus-
ter, cluster 1. After insertion of the removed corec4, the
floorplan result and the bounding resources for all the clus-
ters will be updated.

After floorplanning, the clusters with zero core will be
ignored and the optimal switch number is determined. The
connectivity between cores and switches is also established,
which can fully support the chip operating frequency.

4. Switch and Network Interface Insertion

New switches and network interfaces will be included in
the NoC topology so their physical positions must be de-
termined to estimate the link power and delay. Due to the
restriction that switches and network interfaces cannot be
placed on the core, the location must be within a whites-
pace.

To solve this kind of problem, an even grid structure
is used, whose sizeP × Q is determined by a specified in-
dividual grid size. Given a floorplan result, we calculate
the amount of whitespace in each gridgi , denoted asws(gi).
Let A be the area of a switch or network interface. The ca-
pacity cap(gi) of a grid gi , i.e., the number of switches or
network interfaces that can be located atgi , is defined as
cap(gi) = ⌊ws(gi)/A⌋.

4.1 ILP Formulation

Instead of inserting switches and network interfaces seper-
ately, we formulate the problem as an Integer Linear Pro-
gramming (ILP) which can insert switches and network in-
terfaces to the optimal position simultaneously with the min-
imized link power consumption. We want to minimize the
following cost:

cost= Pc2ni + Pni2sw + Psw2sw (6)

wherePc2ni andPni2sw denotes the power consumption be-
tween cores to network interfaces and network interfaces to
switches respectively andPsw2sw is the power consumption
of interconnects among switches. TABLE 1 shows the nota-
tions used in the ILP formulation.

Let ai,m denotes whether to choose gridgi to insert net-
work interfacenim andb j,k denotes whether to choose grid
g j to insert switchswk. ai,m = 1 if grid gi is assigned tonim,
otherwiseai,m = 0. b j,k = 1 if grid g j is assigned toswk,
otherwiseb j,k = 0.

If grid gi is assigned tonim, the sum of the Manhat-
tan distances between a network interfacenim and the corre-

ZHONG et al.: APPLICATION-SPECIFIC NETWORK-ON-CHIP SYNTHESIS: CLUSTER GENERATION AND NETWORK COMPONENT INSERTION
5

Table 1 Notation used in ILP Formulation

nc number of cores(network interfaces).
nsw number of clusters(switches).
ng number of grids with non-zero capacity.
Ck set of cores inkth cluster.
CORES set of cores,CORES= {c1 . . . cnc}.
ci the ith core (1≤ i ≤ nc).
nii the ith network interface(NI).
swi the ith switch.
gi the ith grid.
cap(gi) capacity of the gridgi .
(xci , yci) coordinate of the coreci .
(xgi , ygi) coordinate of gridgi .
ai,m whether insertnim into gridgi , ai,m=1,

if insert nim into gi , otherwiseai,m=0.
bj,k whether insertswk into grid gi , bj,k=1,

if insert swk into g j , otherwisebj,k=0.

sponding corecm is given by:

disi
nim,cm

= |xgi − xcm| + |ygi − ycm| (7)

where (xgi , ygi) represents the coordinate of gridgi and (xcm,
ycm) is the coordinate of the corecm.

The distance between network interfacenim and the
corresponding corecm is calculated as:

dis nicm =

ng∑

i=1

ai,m · disi
nim,cm

(8)

Let Ck be the set of cores in thekth cluster. We have
∀i, j, Ci∩C j = φ and

⋃nsw

k=1 Ck = CORES. For each network
interfacenie with its corece ∈ Ck, the distance betweennie
and the switchswk is denoted asdis nise,k:

dis nise,k =

ng∑

i=1

ng∑

j=1

ai,e · b j,k · disgi, j (9)

wheredisgi, j is the distance between gridgi and gridg j:

disgi, j = |xgi − xg j | + |ygi − yg j | (10)

The distance between switchswd and switchswt is de-
noted asdis swd,t:

dis swd,t =

ng∑

i=1

ng∑

j=1

bi,d · b j,t · disgi, j (11)

However, the equation fordis nise,k and dis swd,t

above are illegal in an ILP because they are non-linear. As
a result, we introduce boolean variablesλie, jk andγid, jt to
replaceai,e · b j,k andbi,d · b j,t, respectively, and enforce the
following artificial constraints in our ILP:

dis nise,k =

ng∑

i=1

ng∑

j=1

λie, jk · disgi, j

ai,e+ b j,k − λie, jk ≤ 1 (12)

ai,e− λie, jk ≥ 0

b j,k − λie, jk ≥ 0

Because of constraints(12), and the fact thatdis nise,k

appears in the cost function to be minimized,λie, jk will be
equal to 0 unless bothai,e andb j,k are 1. Similarly,dis swd,t

can be re-written as:

dis swd,t =

ng∑

i=1

ng∑

j=1

γid, jt · disgi, j

bi,d + b j,t − γid, jt ≤ 1 (13)

bi,d − γid, jt ≥ 0

b j,t − γid, jt ≥ 0

Let cr corem be the communication requirement of the
corecm, andcr sw2swd,t be the communication requirement
between switchswd and switchswt. To minimize the to-
tal power consumption of the links, we need to minimize
the length of the links weighted by their communication
requirement values, so that higher communication require-
ments are shorter than lower ones. Formulating the objective
function mathematically, we get:

cost =
nc∑

m=1

dis nicm · cr corem

+

nsw∑

k=1

∑

ce∈Ck

dis nise,k · cr coree (14)

+

nsw∑

d=1

nsw∑

t,d

dis swd,t · cr sw2swd,t

The ILP formulation for optimizing switch and net-
work interface positions is as follows:

minimize cost (15)

sub ject to Equations(7)− (14)
ng∑

i=1

ai,e = 1, ∀e ∈ {1 . . .nc}

ng∑

j=1

b j,k = 1, ∀k ∈ {1 . . .nsw}

nc∑

e=1

ai,e+

nsw∑

k=1

bi,k ≤ cap(gi), ∀i ∈ {1 . . .ng}

ai,e, b j,k, λie, jk, γid, jt = 0 or 1

We adoptedCbc [16] as our ILP solver to obtain the
optimum solutions. For small applications (12 cores, 3
switches), the optimal solution can be obtained in few sec-
onds.

4.2 Hierarchical ILP Flow for Accelerating

Computationally, ILP is one of the known NP-hard prob-
lems [17], it will be very time-consuming for large appli-
cations. Thus, in this subsection, we use a hierarchical

6
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x

Fig. 7 Example of Hierarchical ILP Flow for Accelerating

flow to deal with the problem, locating network components
(switches and network interfaces) efficiently. We use the fol-
lowing hierarchical flow to reduce the number of variables
in ILP formulation:

a. Divide the chip region equally into some subregions.
b. Globally locate the network components into the subre-

gions with non-zero capacity by applying Integer Lin-
ear Programming (ILP).

c. Divide each subregion equally into some smaller sub-
regions. Each smaller subregion will be assumed as the
candidate positions for the network components which
are located into the corresponding upper-level subre-
gion. Then, applyb.

d. Recursively applycuntil each subregion contains small
number of grids with non-zero capacity.

e. On the bottom level of hierarchical flow, based on the
reduced number of possible grids for each network
component, apply Integer Linear Programming (ILP)
to insert switches and network interfaces into the grids
simultaneously.

Fig.7 shows an example of a 3-level hierarchical ILP
flow. On level 0, initially, all the network components
(switches and network interfaces) are located at the center
of the chip (here we use switch 1, 2, 3 as example). Then
the chip is divided into four subregions: A, B, C and D.
These four subregions are assumed as candidate positions to
locate the three switches. On level 1, we apply Integer Lin-
ear Programming (ILP) globally to insert the switches into
the four subregions. In this example, switches 1, 2 and 3 are
inserted into subregions A, B and C respectively. Then, on
level 2, we divide each subregion into four small subregions.
For example, as is shown, subregion A is divided into four
small subregions A-A, A-B, A-C and A-D. Thus, these four
small subregions are assumed as candidate positions to lo-
cate switch 1. We apply ILP globally, inserting switches 1,
2 and 3 into subregions A-A, B-C and C-B respectively. On
level 3, we also divide each subregion into four small subre-

gions and apply ILP globally. As is shown in Fig.7, finally,
switches 1, 2 and 3 are inserted into subregions A-A-D, B-
C-C and C-B-C respectively.

4.3 Heuristic Algorithm

Instead of inserting switches and network interfaces simul-
taneously, we propose two exact methods to insert switches
and network interfaces separately, which will be very fast
for large applications. We notice that, even for large appli-
cations, the switch number will be small. Hence, the switch
insertion problem is formulated as an Integer Linear Pro-
gramming solved by the ILP solverCbc. And network inter-
face insertion problem is formulated as a min-cost max-flow
problem.

4.3.1 Switch Insertion

In [12], authors insert switches one by one. Here, we formu-
late switch insertion problem as an Integer Linear Program
(ILP) which can insert switches simultaneously to minimize
link power consumption between switches. The objective is
to minimize the following cost:

cost= Pc2sw + Psw2sw (16)

where Pc2sw denotes power consumption of interconnects
between cores to the corresponding switches.

If switch swk is assigned into gridg j , the distances from
corem ∈ Ck to switchswk is denoted asdis csj

m,k.

dis csj
m,k = |xg j − xcm| + |yg j − ycm| (17)

So, we formulate the objective function mathematically
and we get:

cost=
nsw∑

k=1

ng∑

j=1

b j,k ·
∑

m∈Ck

dis csj
m,k · cr corem (18)

+
∑

d

∑

t

dis swd,t · cr sw2swd,t

The ILP formulation for optimize switch positions is
written as follow:

minimize cost (19)

sub ject to Equations(10), (11), (13), (17)− (18)
ng∑

i=1

bi,k = 1, ∀k ∈ {1 . . .nsw}

nsw∑

k=1

bi,k <= cap(gi), ∀i ∈ {1 . . .ng}

bi,k, γid, jt = 0 or 1

4.3.2 Network Interface Insertion

Once the switch positions are obtained, the next step is to

ZHONG et al.: APPLICATION-SPECIFIC NETWORK-ON-CHIP SYNTHESIS: CLUSTER GENERATION AND NETWORK COMPONENT INSERTION
7

Fig. 8 A sample of NIs insertion. (a)The candidate grids (GRIDS) for
NIs insertion are the gridsg1, g2, g3, g4, g5, g6. (b) Corresponding network
flow model. (c) After min-cost max-flow algorithm, NIs insertinto grids
3,2,3,5,6 respectively. (d) Corresponding network flow result.

find the optimal positions of network interfaces. Previous
work [12] carried out min-cost max-flow algorithm to as-
sign network interfaces into grids. We also use this method
to locate network interfaces but introduce a more accurate
link power evaluation model other than the distance between
each network interface to the corresponding switch.

When insert a network interfacenim of cm(∈ Ck) into
grid gi , the distance betweennim to the corecm and switch
swk can be calculated as:

disi
nim = disi

nim,cm
+ (|xgi − xswk | + |ygi − yswk |) (20)

wheredisi
nim,cm

is the distance betweennim andcm defined in
Equation(7), and (xswk , yswk) is the coordinate of the switch
swk. We define communication requirement of corecm as
cr corem, and the power consumption for insertingnim to
grid gi is evaluated as:

Pi,m = cr corem · disi
nim

(21)

Let NI represents the set of network interfaces and
GRIDS represents the set of grids with non-zero capacity.
For eachgi ∈ GRIDS, its capacity is denoted ascap(gi). We
construct a network graphG = (V,E), and use a min-cost
max-flow algorithm to determine the positions of network
interfaces with minimized total link power consumption. A
simple example is shown in Fig.8.

• V = {s, t} ∪ NI ∪GRIDS.
• E = {(s, nim)|nim ∈ NI} ∪ {(nim, gi)|∀gi ∈

GRIDS} ∪ {(gi , t)|gi ∈ GRIDS}.
• Capacities:

C(s, nim) = 1,C(nim, gi) = 1,C(gi, t) = cap(gi).
• Cost:F(s, nim) = 0, F(nim, gi) = Pi,m, F(gi, t) = 0.

Network interface insertion can be done efficiently by

Table 2 Power Consumption of Switches

Ports (in x out) 2x2 3x2 3x3 4x3 4x4 5x4 5x5

Leakage power (W) 0.0069 0.0099 0.0133 0.0172 0.0216 0.0260 0.0319

Bit energy (pJ/bit) 0.3225 0.0676 0.5663 0.1080 0.8651 0.9180 1.2189

Table 3 Power Consumption of Links

Wire length (mm) 1 4 8 12 16

Leakage power (W) 0.000496 0.001984 0.003968 0.005952 0.007936

Bit energy (pJ/bit) 0.6 2.4 4.8 7.2 9.6

min-cost max-flow algorithms running in polynomial time
[18].

5. Power and Timing Aware Path Allocation

During the procedure of establishing physical links and
paths for traffic flows, we take linear combination of power
consumption and hop-count as objective. In this proce-
dure, the flows are ordered in decreasing rate requirements,
and the bigger flow are assigned first by applying Dijas-
tra’s shortest path algorithm. When opening a new phys-
ical link, we also check whether the switch size is small
enough to satisfy the particular frequency of operation. In
[6] and [19], the authors present methods to remove both
routing and message dependent deadlocks when computing
the paths. We also use the methods to obtain paths that are
free of deadlock.

6. Experimental Result

The proposed methods have been implemented in C++ lan-
guage and run on an IBM workstation (3.2 GHz and 3GB
RAM) with Linux OS. We use hMetis [20] as our partition-
ing tool to generate the initial partition. Besides, we adopted
Cbc[16] as our ILP solver.

6.1 Method of Power Evaluation

In NoC architecture, the total power consumption includes
dynamic power and the related leakage power. The power
consumption can be calculated as†:

P =
∑

i∈NL

(Ei
l ∗ cri + lPi

l) +
∑

k∈S W

(Ek
s ∗ crk + lPk

s) (22)

whereNL andS W represents the set of network links and
switches respectively.Ei

l andEk
s are the bit energy of linki

and switchk respectively.cri andcrk denotes the communi-
cation requirements passing on linki and switchk. The leak-
age power of linki and switchk are denoted aslpi

l andlpk
s

respectively. The leakage power and bit energy of switches
with different example port configurations in 70nm technol-
ogy are showed in TABLE 2. Power consumption of links
is listed in TABLE 3. The power consumption is estimated
using power simulator Orion [21].

†Here we ignore the internal power consumption of cores and

8
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x

Table 4 NoC Synthesis Results for small applications

Benchmark V# E# Part# Power(mW) Hop Count Time(s)

PDF FIP FHP PDF FIP IMP(%) FHP IMP(%) PDF FIP FHP PDF FIP IMP(%) FHP IMP(%)

MPEG4 12 13 3 3 3 52.2 21.17 -59.44 24.21 -53.62 1.16 1 1 10.54 3.32 -68.5 0.42 -96.02

MWD 12 12 3 2.8 2.8 7.93 6.89 -13.11 7.23 -8.8 1.33 1.16 1 10.61 6.47 -39.02 0.44 -95.85

VOPD 12 14 3 2.4 2.4 35.61 24.31 -31.73 27.62 -22.44 1 1 1 11.02 5.48 -50.27 0.37 -96.64

263decmp3dec 14 15 3 3.6 3.6 153.86 126.79 -17.59 138.03 -10.29 1 1 1.14 17.12 4.73 -72.37 0.51 -97.02

263encmp3dec 12 12 3 3 3 1885.1 1590.1 -15.65 1618.23 -14.16 1 1.07 1.06 9.92 2.1 -78.83 0.44 -95.56

mp3encmp3dec 13 13 3 3.2 3.2 164.89 119.19 -27.72 131.93 -20 1 1 1 15.17 1.98 -86.95 0.42 -97.23

Avg - - - - - - - -27.54% - -21.55% 1.08 1.04 1.03 - - -66% - -96.39%

Table 5 NoC Synthesis Results for large applications

Benchmark V# E# Part# Power(mW) Hop Count Time(s)

PDF FIP-H FHP PDF FIP-H IMP(%) FHP IMP(%) PDF FIP-H FHP PDF FIP-H IMP(%) FHP IMP(%)

D 38 tvopd 38 47 3 8 8 147.96 101.08 -31.68 91.27 -38.3 1.33 1.01 1.03 112.81 26.18 -76.79 11.58 -89.73

D 36 36 43 3 8 8 289.69 216.04 -25.42 215.09 -25.75 1.33 1.03 1.03 191.37 19.03 -90.06 10.93 -94.29

D 43 43 54 3 9 9 454.1 297.45 -34.5 296.29 -34.75 1.33 1.03 1.05 608.95 23.24 -96.18 10.91 -98.21

D 50 50 57 3 12 12 225.8 184.87 -18.13 161.98 -28.26 1.33 1.06 1.06 784.09 35.16 -95.52 43.15 -94.5

Avg - - - - - - - -27.43% - -31.77% 1.33 1.03 1.04 - - -89.64% - -94.18%

Fig. 9 Floorplan of MPEG4 with switches and network interfaces.

6.2 Results and Discussion

Four sets of benchmarks are used to evaluate the proposed
algorithm. The first set of benchmarks are three video pro-
cessing applications obtained from [22], including VOPD,
MPEG4, and MWD. The next set of benchmarks are ob-
tained from [23], including 263decmp3dec, 263encmp3dec
and mp3encmp3dec. The benchmark D38 tvopd is ob-
tained from [9]. Finally, we generate several larger synthetic
benchmarks from the above applications.

Fig.9 shows the floorplan results of the cores and
network components for MPEG4, generated by our FIP
(FCG+ILP+PA) method and Fig.10 shows the floorplan

network interfaces as they are constant and will not change with
their positions in the NoC topology.

Fig. 10 Floorplan of D38 tvopd with switches and network interfaces.

results for D38 tvopd based on our FHP (FCG+H+PA)
method.

We compared the proposed method with another
three-stage synthesis approach PDF [12], which applies a
partition-driven floorplanning based on a given switch num-
ber and, in the second stage, places switches and network in-
terfaces separately on the floorplan. The authors also carry
out a power and timing aware algorithm as its third stage for
path allocation. The data are averages of 10 runs.

TABLE 4 shows the comparison of the topologies syn-
thesized by the proposed method and PDF. The column
Power means the actual power consumption and Hop Count
means average number of hops. FIP means the FCG algo-
rithm combined with an Integer Linear Programming (ILP)
to insert switches and network interfaces simultaneously,

ZHONG et al.: APPLICATION-SPECIFIC NETWORK-ON-CHIP SYNTHESIS: CLUSTER GENERATION AND NETWORK COMPONENT INSERTION
9

and a power and timing aware path allocation algorithm
(PA). FHP combined FCG with the heuristic method (H) and
path allocation algorithm (PA). IMP shows the improvement
of the proposed method. In PDF, partition number (=3) is
given as an input and switches and network interfaces are in-
serted separately. Compared with PDF, FIP (FCG+ILP+PA)
synthesis method can save 27.54% of power, 4% of hop-
count and 66% of running time on average. The heuris-
tic method FHP (FCG+H+PA) also saves 21.55% power,
5% of hop-count and 96.39% of running time on average.
As FIP integrates the partitioning and floorplanning to ex-
plore the optimal clustering of cores, and inserts switches
and network interfaces simultaneously, a significant power
and hop-count reduction could be achieved. Moreover, PDF
applies min-cut partitioning every iteration in simulatedan-
nealing, and uses CBL [13] as the floorplan representation,
which uses lots of dummy blocks to ensure good solutions
on penalty of longer running time. On the other hand, FIP
applies a recursive min-cut bi-partitioning algorithm only
once to generated an initial partition and adjusts the clus-
tering of cores during floorplanning (based on a very fast
floorplanner IARFP [15], Sequence-Pair representation), a
large reduction of running time could be achieved.

For further demonstrating the effectiveness, we carried
out FIP-H, (FCG+ILP+PA) with hierarchical ILP flow for
accelerating and FHP (FCG+H+PA) method for large ap-
plications. As is shown in TABLE 5, for large applica-
tions, compared with PDF, FIP-H synthesis method can save
27.43% of power, 30% of hop-count and 89.64% of running
time on average. Also, for large applications, such as D43,
compared with PDF, FHP reduces power consumption from
454.1 mW to 296.29 mW, hop-count from 1.33 to 1.05 and
running time from 608.95 s to 10.91 s. Generally, 31.77% of
power consumption, 29% of hop-count and 94.18% of run-
ning time can be saved for large applications base on FHP
method.

7. Acknowledgements

This research was supported by a grant of Knowledge Clus-
ter Initiative 2nd stage implemented by Ministry of Educa-
tion, Culture, Sports, Science and Technology(MEXT) and
CREST (Core Research for Evolutional Science and Tech-
nology) JST, Japan.

8. Conclusions

In this paper, a FCG algorithm is proposed, which integrate
the partitioning and floorplanning to explore optimal cluster-
ing of cores with minimized power consumption. For small
applications, an Integer Linear Programming (ILP) method
is proposed to place switches and network interfaces opti-
mally on the floorplan, so that accurate power and delay
are obtained for the wires. For large applications, the pro-
posed heuristic algorithm is also efficient for switches and
network interfaces insertion. Experimental results show that
our NoC topology leads to a large reduction in power con-

sumption, hop-count and running time. In future, we plan
to extend the synthesis approach to three-dimension which
needs to meet the TSV constraints and technology require-
ments in 3-D NoCs.

References

[1] W.J.Dally and B.Towles, ”Route packet, not wires: on-chip Inter-
connection Networks,” Proc.IEEE/ACM Design Automation Con-
ference, pp.684-689, 2001.

[2] L.Benini and G.De Micheli, ”Networks on chips: A new SoC
paradigm,” Computer, pp.70-78, 2002.

[3] J.Hu and R.Marculescu, ”Energy-aware mapping for tile-based NoC
architectures under performance constraints,” Proc.IEEE/ACM Asia
and South Pacific Design Automation Conference, pp.233-239,
2003.

[4] S.Murali and G.De Micheli, ”Bandwidth-constrained mapping of
cores onto NoC architectures,” Proc.IEEE Design Automation and
Test in Europe Conference, vol.2, pp.896, 2004.

[5] M.B.Taylor, J.Kim, J.Miller, D.Wentzlaff, F.Ghodrat, B.Greenwald,
H.Hoffman, P.Johnson, Lee Jae-Wook, W.Lee, A.Ma, A.Saraf,
M.Seneski, N.Shnidman, V.Strumpen, M.Frank, S.Amarasinghe,
and A.Agarwal, ”The Raw microprocessor: a computational fab-
ric for software circuits and general-purpose programs,” Proc.IEEE
Micro, pp.25-35, 2002.

[6] S.Murali, P.Meloni, F.Angiolini, D.Atienza, S.Carta,L.Benini, G.De
Micheli, and L.Raffo, ”Designing Application-Specific Networks on
Chips with Floorplan Information,” Proc.IEEE/ACM International
Conference on Computer-Aided Design, pp.355-362, 2006.

[7] S.Yan and B.Lin, ”Application-specific Network-on-Chip archi-
tecture synthesis based on set partitions and Steiner Trees,”
Proc.IEEE/ACM Asia and South Pacific Design Automation Con-
ference, pp.277-282, 2008.

[8] K.Srinivasan, K.S.Chatha and G.Konjevod, ”Linear programming
based techniques for synthesis of network-on-chip architectures,”
IEEE Trans. VLSI, vol.14, pp.407-420, 2006.

[9] S.Murali, C.Seiculescu, L.Benini, and G.De Micheli, ”Synthesis of
Networks on Chips for 3D Systems on Chips,” Proc.IEEE/ACM
Asia and South Pacific Design Automation Conference, pp.242-247,
2009.

[10] D.Bertozzi, A.Jalabert, S.Murali, R.Tamhankar, S.Stergiou, L.Benini,
G.De Micheli, ”NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” IEEE Trans. Parallel and Dis-
tributed Systems, vol.16, pp.113, 2005.

[11] C.Seiculescu, S.Murali, L.Benini, G.De Micheli, ”SunFloor 3D: A
Tool for Networks on Chip Topology Synthesis for 3D Systems on
Chips,” Proc.IEEE Design Automation and Test in Europe Confer-
ence, pp.9-14, 2009.

[12] B.Yu, S.Dong, S.Chen, S.Goto, ”Floorplanning and Topology Gen-
eration for Application-Specific Network-on-Chip,” Proc.IEEE/ACM
Asia and South Pacific Design Automation Conference, pp.535-540,
2010.

[13] X.Hong, G.Huang, Y.Cai, J.Gu, S.Dong, C.Cheng, J.Gu, ”Corner
block list: an effective and efficient topological representation of
non-slicing floorplan,” Proc.IEEE/ACM International Conference
on Computer-Aided Design, pp.8-12, 2000.

[14] A.Pinto, L.P.Carloni, A.L.Sangiovanni-Vincentelli, ”Efficient Syn-
thesis of Networks on Chip”, Proc.IEEE International Conference
on Computer Design, pp.146-150, 2003.

[15] S.Chen, T.Yoshimura, ”Fixed-Outline Floorplanning:Block-
Position Enumeration and a New Method for Calculating Area
Costs,” IEEE Trans. Computer Aided Design, pp.858-871, 2008.

[16] Cbc, ”ILP solver” http://projects.coin-or.org/Cbc
[17] M.R.Garey and D.S.Johnson, ”Computers and Intractability: A

Guide to the Theory of NP-Completeness,” WH Freeman and Com-
pany, San Francisco, 1979.

10
IEICE TRANS. ELECTRON., VOL.Exx–??, NO.xx XXXX 200x

[18] R.K.Ahuja, T.L.Magnanti, and J.B.Orlin, ”Network Flows: Theory,
Algorithms, and Applications,” Prentice Hall/Pearson, 2005.

[19] K.Goossens, A.Radulescu, A.Hansson, ”A Unified Approach
to Constrained Mapping and Routing on Network-on-Chip Ar-
chitectures,” Proc.IEEE/ACM International Conference on Hard-
ware/Software Codesign and System Synthesis, pp.75-80, 2005.

[20] G.Karypis, R.Aggarwal, V.Kumar, and S.Shekhar, ”Multi-
level Hypergraph Partitioning: Application in VLSI Domain,”
Proc.IEEE/ACM Design Automation Conference, pp.526-529,
1997.

[21] H.Wang, X.Zhu, L.Peh, and S.Malik, ”Orion: A Power-Performance
Simulator for Interconnection Networks,” Proc.IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp.294-305, 2002.

[22] D.Bertozzi, A.Jalabert, S.Murali, R.Tamhankar, S.Stergiou, L.Benini,
and G.De Micheli, ”NoC Synthesis Flow for Customized Domain
Specific Multiprocessor Systems-on-Chip,” IEEE Trans. Parallel
and Distributed Systems, pp.113-129, 2005.

[23] K.Srinivasan, K.S.Chatha, and G.Konjevod, ”Linear programming
based techniques for synthesis of network-on-chip architectures,”
IEEE Trans. VLSI, pp.407-420, 2006.

Wei Zhong received the B.S. degree in Em-
bedded System Engineering from Dalian Uni-
versity of Technology, China in 2008, the M.S.
degree in System LSI Engineering from Waseda
University, Japan in 2010. He is currently pur-
suing the Ph.D. degree in System LSI Design
Automation Lab, Waseda University, Japan. His
research interests include TSV assignment for
3D ICs, floorplanning algorithms and synthesis
of networks on chips.

Takeshi Yoshimura received B.E., M.E.,
and Dr. Eng. degrees from Osaka University,
Osaka, Japan, in 1972, 1974, and 1997. He
joined the NEC Corporation, Kawasaki, Japan,
in 1974, where he has been engaged in research
and development efforts devoted to computer
application systems for communication network
design, hydraulic network design, and VLSI
CAD. From 1979 to 1980 he was on leave at the
Electronics Research Laboratory, University of
California, Berkeley, where he worked on very

large scale integration computer-aided design layout. He received Best Pa-
per Awards from the Institute of Electronics, Information and Communica-
tion Engineers of Japan (IEICE) and the IEEE CAS Society. Dr.Yoshimura
is a Member of the IEICE, IPSJ (the Information Processing Society of
Japan), and IEEE.

Bei Yu received the B.S. degree in the De-
partment of Mathematic from UESTC, China in
2007, the M.S. degree in EDA lab, Department
of Computer Science and Technology, Tsinghua
University, China in 2010. He is currently
a Ph.D candidate in VLSI Design Automation
lab, Department of Electrical and Computer En-
gineering, The University of Texas at Austin,
USA. His research interests include CAD for

VLSI, floorplanning algorithms and low power
design.

Song Chen received the B.S. degree in com-
puter science from Xi’an Jiaotong University,
Xi’an, China, in 2000, the M.S. and Ph.D. de-
grees in computer science from Tsinghua Uni-
versity, Beijing, China, in 2003 and 2005, re-
spectively. He is currently an assistant profes-
sor at the Graduate Schoolof IPS, Waseda Uni-
versity, Japan. His research interests include
several aspects of electronic design automation,
e.g., floorplanning, placement and high-level
synthesis.

Sheqin Dong received the B.E. degree in
Computer Science in 1985, M.S. degree in semi-
conductor physics and device in 1988, and Ph.D.
degree in mechantronic control and automation
in 1996. He is currently an associate professor
of the EDA lab at the department of computer
science and technology in Tsinghua University.
His current research interests include CAD for
VLSI, floorplanning and placement algorithms,
multimedia ASIC and hardware design.

Satoshi GOTO received the B.E. and M.E.
degree in Electronics and Communication En-
gineering from Waseda University in 1968 and
1970, respectively. He also received the Dr. of
Engineering from Waseda University in 1981.
He is IEEE fellow, Member of Academy En-
gineering Society of Japan and professor of
Waseda University. His research interests in-
clude LSI System and Multimedia System.

