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Abstract—Combining multiple pattern lithography (MPL) and optical
proximity correlation (OPC) pushes the limit of 193nm wavelength
lithography to go further. Considering that layout decomposition may
generate plenty of solutions with diverse printabilities, relying on
conventional mask optimization process to select the best candidates for
manufacturing is computationally expensive. Therefore, an accurate and
efficient printability estimation is crucial and can significantly accelerate
the layout decomposition and mask optimization (LDMO) process. In
this paper, we propose a CNN based prediction and integrate it into
our new high performance LDMO framework. We also develop both
the layout and the decomposition sampling strategies to facilitate the
network training. The experimental results demonstrate the effectiveness
and the efficiency of the proposed algorithms.

I. INTRODUCTION

The shrinkage of device feature size has reached the resolution limit
of the 193nm wavelength lithography, thus various resolution en-
hancement techniques (RETs) are heavily applied in the post-layout
design flow to maintain a good pattern printability when transferring
patterns from mask to wafer. Multiple patterning lithography (MPL)
and optical proximity correlation (OPC) are two of very promising
solutions among all the RETs.

MPL is currently widely applied to enhance the resolution in
industry. The key step in MPL is the layout decomposition which
assigns the conflicted patterns on a layout to separated masks for
manufacturing. To achieve better decomposition quality, various
methods have been proposed [1]–[4]. OPC or mask optimization is
able to handle the optical distortions in subwavelength lithography
[5] by refining the pattern shapes on a mask. There are also different
approaches proposed to solve this problem [6]–[9].

After conducting layout decomposition, multiple solutions can be
obtained, as shown in Fig. 1(a). To further enhance the printability,
mask optimization is performed and we can select the masks with
the highest printability. Since the mask optimization is a subsequent
step of the layout decomposition, the final quality is determined,
to a large extent, by the layout decomposition result. Fig. 1(b)
shows corresponding trajectories during mask optimization process
of different decomposition results. It is observed that the printability
is not consistently good or bad for a given instance. Only after
the entire process is completed can we tell the good ones from
the bad ones. However, it is computationally expensive to run all
solutions through mask optimization process due to the overhead
imposed by lithography modeling. Recently it has been demonstrated
that a simultaneous layout decomposition and mask optimization
framework can ease the gap and obtain high quality and high
printability masks in a unified way [10], in which the final masks are
generated by the collaboration of mask optimization engine and dis-
crete optimization engine. However, there are still some deficiencies
when selecting the best decomposition since selection is performed
with a greedy pruning scheme which relies on mask optimization
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Fig. 1 Optimization runtime and decomposition convergence com-
parison; (a) Different decomposition optimization results of the
same layout; (b) Corresponding decomposition convergence of EPE;
(c) The runtime breakdown: comparison between decomposition
selection (DS) and mask optimization (MO).

process to estimate the printability. Given a situation like Fig. 1(b),
the method proposed in [10] is not an ideal solution. On one hand,
leveraging mask optimization engine for printability estimation is
expensive as mentioned before. Fig. 1(c) shows the proportion of
mask optimization (MO) and decomposition selection (DS). It can
be seen that time consumption on decomposition selection is even
larger than that on mask optimization, which motivates us to explore
a more effective and efficient way for decomposition selection, i.e.,
printability estimation. On the other hand, the greedy pruning is
based on the printability of intermediate mask optimization results,
which is not an accurate estimation and hence leads to sub-optimal
solutions. Therefore, an efficient and accurate printability prediction
approach is promising to enhance and accelerate the design flow.

Deep learning has drawn great attention for its ability of learn-
ing automatically from a large amount of data. In the electronic
design automation (EDA) field, deep learning has been widely
applied in various EDA applications. As the most conventional
model, convolutional neural networks (CNNs) have been adopted
for routability estimation [11], lithography hotspot detection [12]
and resist modeling [13]. In this work, we propose a deep learning-
driven framework based on CNN to predict and further improve the
printability of masks. The framework contains a layout generation
module, a printability estimation module and a mask optimization



module. To generate high-quality decomposition candidates, we use
n-wise method and minimum spanning tree (MST) to construct
decomposition rules during the generating process. Since we can
hardly evaluate the printability of a decomposition, CNN is used to
help us select the best decomposition candidate. Besides, in order
to promote the accuracy of prediction and accelerate the training
process, we designed our sampling strategy. The main contributions
of this work are as follows:

• We propose a CNN based layout decomposition evaluation
module to predict the printability after mask optimization.

• We combine the MST and n-wise method to generate layout
decomposition more efficiently.

• We develop a set of sampling approaches to sample the rep-
resentative decomposition as the training set. A comparison to
random sampling strategy shows our sampling method reduces
about half of the edge placement errors (EPE).

• Experimental results show that our framework outperforms
other previous works and reduces the EPE violations at least
68.0%.

The rest of this paper is organized as follows:
Section II introduces the background of double pattern lithography

and gives the problem definition. Section III describes the overall
flow of our framework. Section IV shows the details of training the
CNN, including layout sampling, decomposition sampling, and CNN
training. Section V and Section VI present the experimental results
and conclusion.

II. PRELIMINARIES

In this section, we will introduce some background of layout
decomposition, inverse lithography technology and give the problem
formulations.

The task of mask optimization for double pattern lithography is
generating a pair of optimized masks to get the output of lithography
simulation model T and the target image T ′ as close as possible.
Gradient descent based inverse lithography technology (ILT) has
been widely applied to generate the output mask. In order to make
the param of lithography simulation model differentiable, we applied
sigmoid function as follows

Mi(x, y) =
1

1 + e−θmPi(x,y)
, (1)

In this way, we express the binary value mask M with unbound
param P , θm is the coefficient to control the slope of the sigmoid
function. Similarly, constant threshold photo resist model can be
presented as

Ti(x, y) =
1

1 + e−θz(Mi(x,y)−Ith)
. (2)

In our implementation, θm, θz and Ith are set to 8, 120 and
0.039 respectively. In double pattern inverse lithography technology,
printed image is organized in the following form

T (x, y) = min{T1(x, y) + T2(x, y), 1}. (3)

Then we can derive the gradient of T (x, y) with respect to
Pi(x, y), and update corresponding Mi(x, y) by performing gra-
dient descent process. More details about the gradient formulation
can be seen in [10].

Definition 1 (EPE). EPE measures the manufacturing distortion by
the difference of edge placement between the printed image and the
target layout. A checkpoint will be marked as an EPE violation if
its EPE greater than a given threshold value.
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Fig. 2 Overview of the proposed LDMO flow.

Definition 2 (L2 Error). L2 Error indicates the difference between
the printed image T and the target image T ′, which is defined as
‖T − T ′‖22.

EPE is one of the most important criterions of image printability.
ILT process reduces the L2 Error in each iteration to minimize the
number of EPE indirectly. In our work, both EPE and L2 Error are
selected as printability metrics.

The task of layout decomposition for double pattern lithography
is to generate a pair of decomposed masks so that the masks follow
the design rule. This process can be presented like

fdecomp(T
′) = M1,M2, (4)

where T ′ is the target image and M1, M2 are decomposition result.
The subsequent ILT process generates optimized masks to minimize
the differences between printed image and target image. Equation (5)
described this process.

fILT (M1,M2) = fILT (fdecomp(T
′)) = T , (5)

where T is the printed image after ILT optimization. We can evaluate
its quality by organizing the combination form of EPE and L2 Error.
Thus, the fILT converts to a continuous function. In this work, we
try to use CNN to regress the continuous function derived from
Equation (5) and use the network to guide the process of Equation (4)
to generate better decomposition.

Based on the above definitions, the layout decomposition and mask
optimization (LDMO) problem can be described as

Problem 1 (LDMO). Given a target image T ′, generate a mask
decomposition so that the subsequent mask optimization process can
get minimal EPE violations.

III. OVERALL FLOW

The overall flow of our optimization framework is shown in Fig. 2.
First, decomposition candidates are generated according to the input
layout. Since the number of candidates increases exponentially
with the number of patterns, we build several MSTs and apply n-
wise method to avoid generating violated decomposition. Then all
candidates are sent to printability prediction module. The trained
convolutional neural network scores every candidate and output the
best layout decomposition. Next, ILT is operated to optimize masks
and outputs the final masks. To avoid the estimation error, print
violations will be checked during the ILT optimization process. Once
print violation occurs, we will select a decomposition candidate
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Fig. 3 SP distribution solution; (a) Constructed weighted graph; (b)
MST solution.

again. The following subsections will give a detail description of
each step.

A. Decomposition Generation
Decomposition generation module produces decomposed mask can-
didates for the next module according to the given layout. The flow of
this subsection is described in Algorithm 1. As shown in Fig. 3(a),
layout patterns are first divided into three sets: separated pattern
(SP ) set, violated pattern (VP ) set, and normal pattern (NP ) set.
According to the distance d from the nearest patterns, the belonging
of pattern T is determined by Equation (6).

T ∈


SP , if d ≤ nmin,
VP , if nmin < d ≤ nmax,
NP , if nmax < d.

(6)

Print violation occurs when the distance between two patterns is less
than nmin. As the increasing of distance d, print violation disappears
gradually, but there still exists the interaction between two patterns
until the distance reaches nmax. Therefore, patterns in SP always
cause print violations, so they are ought to be separated from each
other. VP are the kind of patterns that tend to cause printability
decline while NP have a slight effect on the performance compared
to the other two types. When we generate decomposition candidates,
we will take different strategies according to the pattern type. In our
implementation, nmin is set to 80, and nmax is set to 98.

Algorithm 1 Decomposition Generation

Require: Input layout L.
SP , VP , NP ← PatternClassify(L);
V ← SolveMST(SP );
Arrs1 ← GetThreeWiseArrays(V , SP ,VP );
Arrs2 ← GetTwoWiseArrays(NP );
mergedArrs1 ← CheckAndMerge(Arrs1);
mergedArrs2 ← CheckAndMerge(Arrs2);
S ← CombineSolution(mergedArrs1, mergedArrs2);
for j = 1→ S.size do

K ← DrawImage(Sj);
Img.save(K);

end for
return Img

The problem of decomposition is usually solved by constructing a
graph and converts to a coloring problem. For SP , they are going to
be separated from each other. Take patterns in SP as vertexes and the
distance among them as the weight of edge, thus a weighted graph
is built (see Fig. 3(a)). The closer two patterns are, the stronger their
interaction is, so the nearest nodes should be separated in the first
place. In the condition of double pattern lithography, this problem
converts to finding the MST of a weighted graph. As shown in
Fig. 3(b), there are two connected components, so the MST problem
can be solved independently. Based on the result of MST, two
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Fig. 4 n-wise arrays and dual decomposition: (a) The generated three-
wise arrays; (b) The generated two-wise arrays according to Np; (c)
Two different images represent the same decomposition.

neighbor vertexes can be assigned to different masks to avoid the
print violations. Besides, the relative position relationship of patterns
in the same MST can be inferred, which provides the basis of our
following decomposition analysis.

In the case of VP and NP , we shall pay more attention to
VP because they may exercise more influence on the optimization
result. Another requirement is that we want to reduce the number
of decomposition candidates as much as possible. To generate
representative decomposition candidates meanwhile limiting the size
of candidate set, n-wise method is applied. The n-wise test method
(also known as combinatorial test method) has been used to test
compiler [14] by R. Mandl since 1985. In our decomposition process,
covering all the combinations of patterns is prohibitively expensive
which is similar to software testing. n-wise method is usually used to
analysis the main factors affecting the experiment with the smallest
test set. n represents the interaction of the maximum factors we
can test according to the generated arrays. An example of two-wise
(pairwise) arrays with 4 patterns is shown below.

factor1 factor2 factor3 factor4


instance #1 1 0 0 0
instance #2 1 1 1 1
instance #3 0 1 0 1
instance #4 0 0 1 1
instance #5 0 1 1 0

In the generated arrays, each row is an instance of decomposition,
each column is a pattern (factor) and the value determines which
masks this pattern belongs to. Picking any two columns, the complete
combination of them (00, 01, 10, 11) exists, which means n-wise
method reduces the strength of factor combination to minimize the
generated arrays meanwhile maintaining the complete combination
of any n factors. Naturally, if n is set to the number of factors, the
test set becomes Cartesian Product of all factors.

On the basis of MST result, we obtained the relative position
relationship of SP . Imaging a layout has N patterns in NP , V
patterns in VP and M MSTs. Randomly picking a pattern from
every connected component as a factor, then we apply three-wise
method together with the patterns in SP , one possible result Arrs1
is shown in Fig. 4(a). As for patterns in NP , two-wise method is
used to generate Arrs2 (see Fig. 4(b)). After that, two arrays with
different combination strength are created. From the table, you can
see that the number of instances didn’t grow too much with the
number of factors.



The output of decomposition generation module is a gray-scale
image with different grayscale levels to represent patterns distributed
on different masks. n-wise method generates the minimal training set
with strength n, but there exists the same decomposition candidates.
Since the masks are unordered, a layout decomposition can be
represented by two different images as shown in Fig. 4(c). To solve
this problem, we manually number the masks and fix the pattern
numbered 1 on M1 so that the two masks become ordered. Once
pattern numbered 1 is distributed on M2, the value of this row
will be reversed. Then we merge the group with the same value
to drop the same decomposition. Note that this operation will not
destroy the relative position relationship among patterns. So the total
decomposition candidate number should be size(mergedArrs1) ×
size(mergedArrs2).

B. Printability Prediction
The printability prediction module evaluates the decomposition print-
ability by giving candidates scores. All decomposition candidates are
fed to CNN in the form of gray-scale image. This module scores each
input and outputs the decomposition with the minimal score which
is equivalent to the best printability after the ILT optimization.

Considering the predicting error sometimes happens, the decompo-
sition selected by the printability prediction module may cause print
violations in the subsequent mask optimization phase. So we mark
the previous outputs and when facing the same decomposition, we
drop it to avoid giving the same output. Details about CNN training
will be discussed in Section IV.

C. ILT Optimization
At this point, the decomposition candidate has been obtained. To
avoid the predicting error, we check it by detecting print violations
indirectly.

Considering the print violations may happen at any stage of ILT
optimization, we detect them every three iterations. Once violations
are detected, we go back to decomposition generation step and select
another decomposition solution, otherwise we continue to optimize
the masks. The gradient g of ‖T − T ′‖22 with respect to Pi is used
to update parameters in the form of Pi = Pi − stepSize× g. Next,
we update Mi and T with new Pi accodring to Equations (1) to (3).
In our implementation, the max iteration round is set to 29.

IV. TRAINING OF PREDICTION NETWORK

In this section, sampling and training approaches are detailed.
We first present the layout sampling and decomposition sampling
strategy, then we discuss the network structure and decomposition
evaluation metrics of the model. The overall flow of the prediction
network training is illustrated in Fig. 5.

A. Layout Sampling
The number of patterns and their distribution make the count of lay-
out practically unlimited. But due to the diffraction and interference
of light, printed image quality is largely dependent on the nearby
patterns. To capture layout common features (e.g. recognize typical
pattern distribution, ignore slight layout movement and rotation) and
express light propagation property, scale-invariant feature transform
(SIFT) [15] is applied in our layout sampling method. SIFT has been
widely used in computer version filed to capture local features of an
image. The feature points are stable for rotation and scaling which
are suitable for choosing as the reference for classifying the layout.
There is an example of SIFT feature points in Fig. 6, even such
actions as translation, rotation and scaling occurs, these points will
not change. And local features are attached to the points, so they
can be used to represent local similarity of an image. We measure

the similarity of the two layouts by matching the feature points and
calculate the distance between them indirectly .

Let p, q be the 128-dimensional feature vector calculated by the
SIFT algorithm. Dth is the threshold to determine if the two feature
points are matched. Therefore, the distance between two feature
points (vectors) is defined as

d(p, q) =

{√
pq>, if

√
pq> ≤ Dth;

1, otherwise,
(7)

where q> is transform of q. Equation (7) shows that if the two
feature points are close enough, the distance is the euclidean distance.
Otherwise, it means they are not matched, the distance between
them is their L2-Norm which is 1. We set Dth to 0.7 in our
implementation. Based on the distance definition of two points, we
are able to calculate the distance between two layouts.

Algorithm 2 Calculate Layout Similarity

Require: Layout Lw and Ls.
Let pw1 ,pw2 , ...,pwn be the feature poins in Lw;
Let ps1,ps2, ...,psm be the feature poins in Ls;
Initialize empty array Dws;
for i = 1→ n do

for pwi , find minimum d(pwi ,p
s
j) with unmatched psj ;

if d(pwi ,psj) ≤ Dth then
mark pwi , psj matched;
put d(pwi ,p

s
j) in Dws;

else
put 1 in Dws;

end if
sort Dws in an ascending order;

end for
S(Lw, Ls) =

∑c
k=1D

ws
k ;

return S(Lw, Ls);

Algorithm 2 shows the similarity calculation between layout w and
layout s. For a feature point in Lw, we need to find a feature point
in Ls that is not marked as matched and ensure the point distance
d(pwi ,p

s
j) is minimum. If the d(pwi ,p

s
j) is less than Dth, it means

the similarity of these two points are high and the pattern distribution
near this point is very similar, so we mark them as matched. Dws

records the distance between matched feature points. Because the
number of feature points differs as the change of layout, the length
of Dws after above process is not the same. In order to make all
distances comparable, we sort Dws in an ascending order, then take
the first c additions as the layout distance S(Lw, Ls).

After calculating the layout distance, we use a clustering algorithm
to divide the layout into several classes to obtain the representative
layouts, and randomly select the layout from each class as the
input of Section IV-B. The representative objects of k-medoids
clustering are called medoids. They are the real points that exist in the
cluster, and the k-medoids clustering is less sensitive to noise points
compared to k-means. The performance of k-medoids is evaluated
by the sum of layout distance (SLD), which is defined by

SLD =
M∑
i=1

∑
Lk∈Ci

S(Lk, Li), (8)

where Ci is a class whose center point is Li. There are M classes
and Lk is non-central point belongs to Ci. SLD represents the sum
of distance from each non-central point to its respective center point.
The object is to reduce SLD by changing center point and calculating
the distance of each class. We set m to 50, c to 60 and we randomly
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select 5 layouts in each cluster.

B. Decomposition Sampling

Similar to the problem of layout sampling, the decomposition number
of a specific layout increases exponentially as the pattern number
grows. For a layout with n patterns, there are 2n−1 different
decompositions, which are too large to collect all of them as our
training set.

Considering CNN has the property of translation invariant, and
the EPE occurrence is highly related with nearby distribution. So
the complete combination of patterns in a sub-region will be more
helpful for our training and n-wise method is able to handle this
problem. In order to focus more promising decomposition solution,
we also combine MST and n-wise method to generate training set.

Different from decomposition generation phase, here we only
focus on the patterns with the distance less than nmin as generating
the score of decomposition is much more time-consuming. These
patterns are divided into SP , while the rest patterns are non-violated
pattern (NP ) set.

Like generating mergedArrs1 in Section III-A, we first divide
patterns into two types, SP and NP . By solving MST problem, we
can obtain the relative position relationship of SP , then we build
the three-wise arrays together with NP . Finally, we reverse value
and merge the same rows. In our implementation, setting n to 3
is a trade-off between prediction accuracy and simulation running
time. Three-wise sampling strategy ensures that any sub-region with
three patterns (part of patterns in SP are excluded), the training set
contains complete combination of them.

C. Model Training

The input of CNN is a gray-scale image, so we need to check
the distribution of pattern numbered 1 and solve the dual issue as
mentioned in Section III-A. In this paper, L2 error and EPE numbers
are selected as the evaluation metrics. Note the occurrence of print
violations will lead to significantly decline in printability, the score
of decomposition is organized as follows:

score = α× #L2 Error + β × #EPE + γ × #Violation. (9)

In our implementation, α, β and γ are 1, 3500 and 8000 respectively,
and z-score regularization is applied to make the score comparable.
The label in Equation (9) is continuous, which makes our model a
regression problem.

Considering that the ILT-based OPC phase may introduce noise, in
order to overcome the effects of noise, the following mean absolute

TABLE I Comparison with previous frameworks

ID
[16]+ [6] [17]+ [6] [10] Ours

EPE Time EPE Time EPE Time EPE Time
# (s) # (s) # (s) # (s)

1 1 1183 1 1183 1 1995 0 169
2 8 1421 4 1405 1 1996 1 208
3 5 867 5 1068 1 1990 0 228
4 1 1046 1 737 0 1996 0 176
5 5 1213 7 1207 6 1996 0 217
6 5 1048 8 1080 1 1989 2 295
7 13 1080 13 1061 1 1993 0 273
8 7 1046 3 1220 0 1997 1 234
9 5 1173 6 1176 1 1997 1 241
10 7 1171 8 774 3 1998 0 303
11 5 1188 2 1233 0 1987 1 229
12 5 773 4 1168 7 1999 4 299
13 11 1017 10 922 6 1998 0 272

Ave. 6.00 1094.31 5.53 1094.92 2.15 1994.69 0.69 241.84
Ratio 8.69 4.52 8.01 4.53 3.12 8.25 1.00 1.00

error (MAE) is applied as the cost function:

MAE =

∑n
i=1 |yi − ŷi|

n
, (10)

where yi denotes the label of the i-th decomposition in the training
set, ŷi is the corresponding predicted value.

The image has 224 × 224 dimensions which increases the com-
plexity of training. Here the Adam optimizer is selected to train
the model. Compared to the mini-batch gradient, Adam computes
individual adaptive learning rates for different parameters which is
more suitable for large scale data.

We take the structure of ResNet18 as the basic regression network
(see Fig. 5). The identity mapping between each block enables
the net layer to become deeper to obtain a better regression of
object function. The input of the net is 224 × 224 × 1 tensor to
receive a grayscale image. Identity mapping is added between two
3 × 3 conventional layers. After average pooling, there is a 1000
dimensions layer, and a fully connected layer is added to output the
score.

V. EXPERIMENTAL RESULT

Our optimization framework is implemented in C++ and validations
are performed on Intel i7 3.6Ghz CPU. To generate n-wise sampling
arrays, we use PICT [18], an open source C library. The EPE
violation threshold is set to 10nm. Experiments are conducted on an
open source cell library NanGate [19]. We manually generate layout
dataset that contains 8000 contact layout designs. These designs
resemble NAND gate 45nm library and are verified with Mentor
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Fig. 7 Comparison with ICCAD’17 [10] on: (a) AOI211_X1; (b)
NAND3_X2; (c) BUF_X1. Compared with the state-of-the-art, in all
three cases our proposed framework can effectively remove EPE.
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Fig. 8 Comparison with random sampling strategy.

Calibre design rule check.
In the first experiment, we compare the optimization result of

our framework with previous unified framework and two-stage
independent flow on standard cell library NanGate, as shown in
TABLE I. We obtain binary from the authors of [10], and the results
of the two other flows are directly from [10]. Columns “EPE” and
“Time (s)” list the number of EPE violations and the cost of time
when the optimization is convergent.

From TABLE I, our framework shows significant improvement
in “EPE” and “Time” on average. The runtime of our framework
is 241.84 seconds which achieves around four times speed-up in
comparison with “ [16]+ [6]” and “ [17]+ [6]”, and eight times
speed-up comparing to “ [10]”. That is because there is no need
to solve the SDP problem and operate decomposition selection by
lithography simulation both of which are extremely time-consuming.
In the term of “EPE”, our framework reaches a three times reduction
comparing to [10] and at least six times compared to two conven-
tional flows (i.e. [16]+ [6] and [17]+ [6]). There are some examples
of optimization result in Fig. 7.

In the second experiment, we test the efficiency of our sampling
strategy. “Random Sampling” in Fig. 8 is a network trained with the
data we randomly selected in both the stages of layout sampling and
decomposition sampling. “Ours” is trained in the way we introduced
in Section IV. From the bar chart we can see that the EPE number
of “random sampling” is about twice of ours. The reason is that for
a specific layout, the solution space is too large, but many of the
results can be discarded by formulating some physical rules. Our
sampling strategy focuses on the possible decomposition while the
random sampling is equivalent to sampling evenly at the solution
space, which needs much more training data.

VI. CONCLUSION

In this paper, we propose a deep learning-driven framework to not
just bridge the gap between layout decomposition and mask opti-
mization, but also speed-up the procedure of selecting decomposition

and ILT process. To improve the predicting accuracy and accelerate
the training process, we use SIFT feature extraction, k-medoids
clustering and n-wise method to generate the training set. We also
combine the MST and n-wise method to generate decompositions
with different pattern combination strengths. Experiments demon-
strate that our framework can efficiently reduce EPE violations and
accelerate the overall optimization process.
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