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ABSTRACT
As the circuit feature size continuously shrinks down, hotspot detec-
tion has become a more challenging problem in modern DFM flows.
Developed deep learning techniques have recently shown their
advantages on hotspot detection tasks. However, existing hotspot
detectors only accept small layout clips as input with potential
defects occurring at a center region of each clip, which will be
time consuming and waste lots of computational resources when
dealing with large full-chip layouts. In this paper, we develop a
new end-to-end framework that can detect multiple hotspots in a
large region at a time and promise a better hotspot detection per-
formance. We design a joint auto-encoder and inception module for
efficient feature extraction. A two-stage classification and regres-
sion flow is proposed to efficiently locate hotspot regions roughly
and conduct final prediction with better accuracy and false alarm
penalty. Experimental results show that our framework enables a
significant speed improvement over existing methods with higher
accuracy and fewer false alarms.

1 INTRODUCTION
With the development of the semiconductor industry, transistor
feature size shrinks rapidly, which significantly challenges man-
ufacturing yield. To ensure the printability of layout designs, an
efficient and accurate hotspot detector is indispensable. Currently,
there are three main classes of methods: lithography simulation,
pattern matching and machine learning. Lithography simulation is
accurate but extremely time consuming. Pattern matching and ma-
chine learning based methods are proposed to speedup the hotspot
detection flow while attain the detection accuracy as much as pos-
sible.

On one hand, the main idea of pattern matching is to set up
a collection of hotspot layout patterns and use this collection to
identify any matched patterns in a new design as hotspots [1, 2].
Although the pattern matching overcame the runtime issue, this
approach cannot give a confident result on unseen hotspot patterns.
On the other hand, machine learning basedmethods have shown the
capability to solve this problem with generalized feature extractors
[3–12]. A learningmodel is usually trained by a batch of labeled data
and conducts hotspot prediction on new layout patterns efficiently.
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Figure 1: Conventional hotspot detection flow.

Convolutional neural network (CNN) is a powerful technique to
improve hotspot detection performance [13–19]. It has the ability to
extract the features in different levels in an automatic way. Yang et
al. [15] proposed a deep CNNwhich considered the data unbalanced
issue and achieved high classification accuracy. They also designed a
biased learning technique for unbalanced dataset and apply discrete-
cosine transformation (DCT) to give proper feature expression [16].

In all existing literatures, however, hotspot detectors only work
on small clips extracted from a whole chip layout and can only de-
tect one hotspot location at a time that occurs at a center (i.e. core
in [20]) of each clip. Figure 1 illustrates a conventional hotspot
detection scheme, which requires repeatedly scanning overlap-
ping regions of a full chip design, therefore it could be a waste of
computational resources and time consuming when facing with
extreme large layouts. To solve this problem, we propose a new
faster region-based hotspot detection framework, which can mark
multiple hotspot locations within a region that is much larger than
a clip applied in previous works, as shown in Figure 2. To the best of
our knowledge, this is the first time a hotspot detector is designed to
detect multiple process weak points within very large scale layout
clips in one step feed-forward detection. The framework contains a
regression and classification multi-task flow which guide to higher
accuracy, higher detection speed and lower false alarm penalty. The
main contributions of this paper are listed as follows:

• We construct a deep neural network specific for region-based
hotspot detection task and our network framework can be
efficiently trained end-to-end.
• We present a clip proposal network and a refinement stage
to further improve accuracy and reduce false alarm.
• We apply a novel classification and regression strategy to
reduce the detection region and make the multiple hotspot
detection become realizable in large scale.
• Experimental results show that our proposed framework has
great advantages over state-of-the-art and can achieve 6.14%
accuracy improvement and 45× speedup on average.

The rest of the paper is organized as follows. Section 2 introduces
basic concepts and gives problem formulation. Section 3 discusses
the details of the proposed end-to-end neural framework. Section 4
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Figure 2: The proposed region-based hotspot detection flow.

lists experimental comparisons with state-of-the-art, followed by
conclusion in Section 5.

2 PRELIMINARIES
The lithographic process which transfers the designed layout pat-
terns onto the silicon wafers involves a lot of variations. Some
patterns are sensitive to these variations and may cause reduction
of manufacturing yield as a result of potential circuit failures. Lay-
out patterns that are sensitive to process variations are defined as
hotspots. We also define a hotspot clip as a clip that contains at least
one hotspot at its core region [20]. A hotspot is correctly detected if
it is located in the core region of a clip that is marked as hotspot by a
hotspot detector. The core region applied in this paper is the middle
third region of the clip. In this paper, the following definitions and
metrics are used to evaluate performance of a hotspot detector.

Definition 1 (Accuracy). The ratio between the number of cor-
rectly detected hotspots and the number of ground truth hotspots.

Definition 2 (False Alarm). The number of non-hotspot clips that
are detected as hotspots by the classifier.

It should be noted that the accuracy is also equivalent to the
true positive rate and the false alarm corresponds to the number of
false positives. Because a good hotspot detector aims to recognize as
many real hotspots as possible and avoids incorrect predictions on
non-hotspot patterns, with the evaluation metrics above, we define
region-based hotspot detection (R-HSD) problem as follows.

Problem 1 (R-HSD). Given a layout region that consists of hotspot
and non-hotspot patterns, the objectives of region-based hotspot
detection is training a model to locate and classify all the hotspot
and the non-hotspot within the region, such that the detection
accuracy is maximized with minimum false alarm penalty.

3 R-HSD NEURAL NETWORK
Our proposed region-based hotspot detection (R-HSD) neural net-
work, as illustrated in Figure 2, is composed of three steps: (1)
feature extraction, (2) clip proposal network, and (3) refinement. In
this section, we will discuss each step with details. At first glance,
R-HSD problem is similar to object detection problem, which is a
hot topic in computer vision domain recently. In object detection
problem, objects with different shapes, types and patterns are the
target to be detected. However, as we will discuss, there is a gap
between hotspot detection and object detection, e.g. the hotspot
pattern features are quite different from the objects in real scenes,
thus typical strategies and framework utilized in object detection
cannot be applied here directly.
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Figure 3: Tensor structure of feature extractor.

3.1 Feature Extraction
Because of wide variations between traditional objects in real sce-
nario and VLSI layout patterns, it is extremely crucial to design
an appropriate feature extractor in our neural network framework.
Our feature extractor aims at transforming original layout feature
non-linearly while reducing computation overhead. Besides, we
also tend to enrich the feature diversity with fewer parameters.
Based on these two major principles, a joint encoder-decoder struc-
ture and inception-based module for efficient feature extraction is
designed, connected with three convolution layers and two max-
pooling layers. This connection is applied to compress the feature
map size from 224 × 224 to 56 × 56 which can bring speed up at
training stage and inference stage.

Yang et al. [15] successfully applied DCT to manually extract
layout pattern features. However, this manual design of the feature
expression may ignore some key features thus may not give a
comprehensive expression. Furthermore, the processing time of
DCT is very time consuming. Compared to the manual rule based
DCT, our proposed feature extractor can transform the origin layout
into a network-compatible expression automatically. Embedded
with the whole neural network, our feature extractor can be trained
and tested end-to-end thus is fast and flexible.

The convolutional network structure designed by [15] performs
well feature extraction, but its structure is too simple thus is limited
to single clip hotspot detection problem. The naive replacement
on DCT without redesign on further extractor is not available to
region based task. There are two metrics for us to think about how
to design new structure in our work. One is go deeper with more
layers, the other is go wider with multiple branches.

3.1.1 Encoder-Decoder Structure. The encoder includes three
convolution layers and the decoder includes three deconvolution
layers. The encoder extracts the features from origin image space
to high dimensions latent space by increasing the number of the
convolution kernels, then the decoder downsamples the features
from high dimensions to origin image space with the symmetrical
kernel settings.

Convolution Layer. The convolution layer is the major part of
the convolution neural network which has been widely used. The
operation between tensor and kernel can be expressed as:

F ⊗ K(j,k) =
c∑
i=1

m∑
m0=1

m∑
n0=1

F(i, j −m0,k − n0)K(m0,n0), (1)



with tensor F ∈ Rc×p×p and kernel K ∈ Rc×m×m .
Deconvolution Layer. In contrast to convolutional layers, de-

convolution layers do the inverse operation which maps the single
input feature point to multiple outputs, which can be considered as
a feature generation. The expression can be written as:

T ⊗ K(j,k) =
c∑
i=1

m∑
m0=1

m∑
n0=1

T(i, j −m0,k − n0)K(m −m0,n − n0),

where T ∈ Rc×n×n is the tensor F ∈ Rc×p×p padded with zero and
n = (m − 1) × 2 + p, kernel K ∈ Rc×m×m . Here padding size is the
number of pixels we fill on the border of the origin feature maps.
In our experiments, padded feature map is equal to the output size.
Kernel size is the size of the deconvolution kernel. We use 3 × 3
kernel size which is same as the encoder part. During training, the
feature map of the deconvolution layer is updated with the back
propagration.

3.1.2 Inception-based Structure. According to recent progress
of deep learning based research in computer vision region, a deeper
neural network can give a much more robust feature expression and
get higher accuracy compared to shallow structure as it increases
the model complexity. However it also brings sacrifice on speed
at both inference stage and training stage. Another point we need
to concern is that the feature expression of the layout pattern is
monotonous, while feature space of layout patterns is still in low
dimension after we transform it by the Encoder-Decoder structure.
According to these issues, we propose an Inception-based structure.
The following three points are the main rules of our design:
• Increase the number of the filters in width at each stage. For
each stage, multiple filters do the convolution operation with
different convolution kernel size and then concatenate them
in channel direction as feature fusion.
• Prune the depth of the output channel for each stage.
• Downsample the feature map size in height and width direc-
tion.

With the above rules, the inception structure [21] can take a
good balance between the accuracy and the time. The blobs shown
in Figure 3 are what we apply in our framework. We construct
the module A with the operation stride one and four branches.
The aim of the module A is to extract multiple features without
donwsampling the feature map. The operation stride of each layer
in module B is two. This setting makes the out feature map half
than the input, which decreases the operations in further. We only
use one Module B here, because the feature map size should not be
too small, while the low dimension of feature expression in final
layers may bring negative affects the final result.

The 1 × 1 convolution kernel with low channel numbers brings
the dimension reduction which controls the number of the parame-
ters and operations. The multiple branches bring more abundant
feature expressions, which give the network ability to do the kernel
selection with no operation penalty.

3.2 Clip Proposal Network
Given the extracted features, a clip proposal network is developed
here to detect potential hotspot clips. For both feature maps and con-
volutional filters, the tensor structures of the clip proposal network
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Figure 4: Kernel Work flow of Clip Proposal Network.

are illustrated in Figure 4. Per preliminary experiments, clips with
single aspect ratio and scale (e.g. square equal to the ground truth)
may lead to bad performance. Therefore, for each pixel in feature
map, a group of 12 clips with different aspect ratios are generated.
The network is split into two branches: one is for classification and
the other is for regression. In classification branch, for each clip, a
probability of hotspot and a probability of non-hotspot are calcu-
lated through softmax function. In regression branch, the location
and the shape of each clip is determined by a vector [x ,y,w,h].

3.2.1 Clip Pruning. While the number of clips is extremely
large during training. If we reserve all the clips generated, it takes
a long time to converge to low classification and regression loss at
training stage but still lead to bad performance at inference stage.
Because these redundant clips have medium intersection area to
the groundtruth which are the noises to the classifier. For the clip
regression task, it is not reasonable to consider linear regression on
these clips with large offset to the groundtruth clips. To overcome
this problem, we consider automatic clip pruning in our neural
network.

We first define Intersection of Union (IoU) as follows:

IoU =
clipдroundtruth

⋂
clipдenerated

clipдroundtruth
⋃
clipдenerated

. (2)

We then apply the following clip pruning rules:
• A clip’s IoU with ground truth clip higher than 0.7 should
be reserved as positive sample;
• The clip’s IoU with any ground truth highest score should
be reserved as positive sample;
• A clip’s IoU with ground truth clip lower than 0.3 should be
reserved as negative sample;
• Rest of clips do no contribution to the network training.

3.2.2 Hotspot Non-Maximum Suppression. After the clas-
sification and regression, the distance between some neighbor
hotspots is quite close to each other, there exists set of overlapped
clips which have the same regression target. To avoid these re-
dundant calculation at training and inference stages, we develop
a hotspot non-maximum suppression (h-nms) strategy to remove
these clips. The h-nms strategy is shown in Algorithm 1.



Algorithm 1 hotspot non-maximum suppression
1: sorted_ws← sorted clip set;
2: k ← size of clip set;
3: for i ← 1, 2, ...,k do
4: current_w← sorted_ws[i];
5: for j ← i, i + 1, ...,k do
6: compared_w← sorted_ws[j];
7: Overlap ← Centre_IoU(current_w, compared_w);
8: if Overlap > threshold then
9: Remove compared_w; k ← k − 1;
10: end if
11: end for
12: end for
13: return sorted_ws;

CS: 0.9

CS: 0.8

CS: 0.5

CS: 0.9

CS: 0.8

(a)

CS: 0.9

CS: 0.8

CS: 0.5

(b)

Figure 5: Examples of (a) conventional non-maximum sup-
pression, and (b) the proposed hotspot non-maximum sup-
pression.
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Figure 6: Tensor structure of Refinement.

The elements of sorted_ws are arranged in descending order
according to the classification score (line 1). Centre_IoU is a
function returning the IoU score which focus on overlap of cores
(line 7). If the IoU is larger than the threshold, we remove the clip
with the lower score from the list (lines 8–10). The removed clips
will not contribute to further operation. Note that in our experiment,
the IoU threshold value is set to 0.7.

Compared to conventional non-maximum suppression method,
our proposed method takes advantage of the structural relation
between core region and clips which avoid the error dropout during
the training. An example is shown in Figure 5, the clip with 0.5
classification score (CS) is removed in conventional method, while
saved in our method if we consider the core within each clip.

3.3 Refinement
After the prediction of the first classification and regression in clip
proposal network stage, we get a rough prediction on hotspot local-
ization and filtered region which is classified as non-hotspot. While
the greedy method of clip filtering cannot guarantee all the reserved
clips are classified correctly, the false alarm may be too high. To
bring a robust detectionwith lower false alarm, we further construct
refinement stage in the whole neural network, which includes a
Region of Interests (RoI) pooling layer, three inception modules,
as well as another classification and regression. The structure of
Refinement is shown in Figure 6.
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Figure 8: (a) 1st hotspot classification in clip proposal net-
work; (b) The labelled hotspots are fed into 2nd hotspot clas-
sification in refinement stage to reduce false alarm.

RoI Pooling. The coordinates of each clip are the actual location
from the origin input image. We scale down the coordinates to
conform with the spatial extent of the last feature map before the
refinement. In traditional image processing, the most commonways
to resize the image are cropping and warping. The crop method
cuts the pattern boundary to fix the target size which leads to
information loss. The warping will reshape the size which change
the shape of origin features. Here we apply Region of Interests
(RoI) pooling to transform the selected feature region h ×w to a
fixed spatial size of H ×W (H andW are the hyperparameters,
and we use 7 × 7 in this work). For each pooled feature region
⌊h/H ×w/W ⌋, the max-pooling is applied independently. The RoI
pooling transforms clips with different sizes into a fixed size which
reserves the whole feature information and makes further hotspot
classification and regression feasible. Figure 7 gives an example of
RoI pooling operations.

Besides classification and regression in clip proposal network,
here additional classification and regression are designed to fine-
tune the clip location and give a more reliable classification result.
At this stage, most non-hotspot clips have been removed, thus two
stage of hotspot classification can efficiently reduce false alarm.
Figure 8 illustrates the flow of the two stage hotspot classification.

3.4 Loss Function Design
We design a multi-task loss function called Classification and Re-
gression (C&R) to calibrate our model. As shown in Figure 4 and
Figure 6, C&R is applied both in clip proposal network stage and
refinement stage. The input tensors of 1st C&R are boxes in Fig-
ure 4.W , H and C are width, height and channel respectively. The
probability score of the hotspot, non-hotspot and prediction of clip
coordinates are grouped in channel direction. Here x , y are the
coordinates of the hotspot, which means the centre of the clip area.
w , h are the width and height of the clip. In 2nd C&R, the tensor
flow of the classification and regression are same as [22] using
fully-connected layers.



In the task of region-based hotspot detection, hi is the predicted
probability of clip i being a hotspot, h′i is the groundtruth of clip i .
li = {lx , ly , lw , lh } ∈ R

4 and l ′i = {l
′
x , l
′
y , l
′
w , l
′
h } ∈ R

4 are assigned
as coordinates of clips with index i representing the encoded coordi-
nates of the prediction and groundtruth respectively. The encoded
coordinates can be expressed as:

lx = (x − xд)/wд , ly = (y − yд)/hд ,

l ′x = (x
′ − xд)/wд , l ′y = (y

′ − yд)/wд ,

lw = log(w/wд), lh = log(h/hд),
l ′w = log(w ′/wд), l ′h = log(h′/hд),

(3)

Variables x ,xд and x ′ are for the prediction of clip, g-clip and
groundtruth clip respectively (same as the y,w and h).

The classification and regression loss function for clips can be
expressed as:

LC&R (hi , li ) =αloc
∑
i
h
′

i lloc (li , l
′
i ) +

∑
i
lhotspot (hi ,h

′

i )

+
1
2
β(∥Tloc ∥

2
2 +

Thotspot 22), (4)

where β is a hyperparameter which control the regularization
strength. αloc is the hyperparameter which control the balance
between two tasks.Tloc andThotspot are the weights of the neural
network. For elements li [j] and l ′i [j] (j ∈ [1, 4]) in li , l

′
i respectively,

lloc can be expressed as

lloc (li [j], l
′
i [j]) =


1
2
(li [j] − l

′
i [j])

2, if |li [j] − l ′i [j]| < 1,

|li [j] − l
′
i [j]| − 0.5, otherwise,

(5)

which is a robust L1 loss used to avoid the exploding gradients
problem at training stage. lhotspot is the cross-entropy loss which
is calculated as:

lhotspot (hi ,h
′

i ) = −(hi logh
′

i + h
′

i loghi ). (6)

In Equation (4), we apply the L2 regularization to the loss func-
tion, which is the sum of the squares of all the weights in the
network. The L2 regularization penalizes peaky weight vectors and
prefers diffuse weight vectors. Due to multiplicative interactions
between weights and features, the L2 regularization term has ap-
pealing property of encouraging the network to use all of its inputs
rather than skewed on partial of its inputs.

4 EXPERIMENTAL RESULTS
Our region-based hotspot detection flow is evaluated on ICCAD
CAD Contest 2016 Benchmarks [25], which contains four designs
are shrunk to match EUV metal layer design rules. Ground truth
hotspot locations are label according to the results of industrial
7nm metal layer EUV lithography simulation under a given pro-
cess window. Because there are no defects found with lithography
simulation on the first benchmark, all our experiments are con-
ducted only on rest three designs, each of which is split in half
with one part used for training and the other one used for test-
ing. We implement our large scale hotspot detection framework
with Tensorflow [26] in Python, and test it on a platform with a
Xeon Silver 4114 processor and an Nvidia GTX Titan graphic card.
Note that three training layouts are merged together to train one

model that will be used in the inference stage. In the following ex-
periments, the neural network is trained with following parameter
settings: input size = 256×256 ( corresponding to 2.56nm×2.56nm
), batch size = 12, initial learninд rate = 0.002 (decay ten times
for each 30000 steps), aspect ratio = [0.5, 1.0, 2.0], scales = [0.25,
0.5, 1.0, 2.0]. The parameters of the loss function are not carefully
chosen, what we use are β = 0.2,αloc = 2.0. At inference stage, we
follow the same data generation rule applied in [16].

We list the detailed result comparison in Table 1. Column “Bench”
lists three benchmarks used in our experiments. Columns “Accu”,
“FA”, “Time” denotes hotspot detection accuracy, false alarm count
and detection runtime, respectively. Column “TCAD’18” lists the
result of a deep learning-based hotspot detector proposed in [16]
that adopts frequency domain feature extraction and biased learning
strategy. We also implement two baseline frameworks that employ
Faster R-CNN [23] and SSD [24], respectively, which are two classic
techniques match our region-based hotspot detection objectives
well. The corresponding results are listed in columns “Faster R-CNN
[23]” and “SSD [24]”. The results show that our framework get better
hotspot detection accuracy on average with 6.14% improvement
with ∼ 200 less false alarm penalty compared to [16]. Especially, our
framework behaves much better on Case2 with 93.02% detection
accuracy compared to 77.78%, 1.8% and 71.9% for [16], Faster R-
CNN and SSD respectively. The advantage of the proposed two-
stage classification and regression flow can also be seen here that
[16] achieves similar hotspot detection accuracy compared to our
framework but has extremely large false alarms that will introduce
additional. It should be noted that the detection runtime is much
faster than [16] thanks to the region-based detection scheme. We
can also observe that although Faster R-CNN and SSD are originally
designed for large region object detection, they perform very poor
on hotspot detection tasks which reflects the effectiveness and
efficiency of our customized framework.

We also study the how different configurations of our framework
affect the performance. Figure 10 illustrates the contribution of
encoder-decoder structure, L2 regularization and refinement stage
to our backbone neural network. “w/o. ED” denotes the framework
without the encoder-decoder structure, “w/o. L2” stands for the

False AlarmDetected Hotspot Missed Hotspot

(a) Ground-truth (b) TCAD’18 [16] (c) Ours

Figure 9: Visualization of different hotspot detection results.



Table 1: Comparison with State-of-the-art

Bench TCAD’18 [16] Faster R-CNN [23] SSD [24] Ours
Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s)

Case2 77.78 48 60.0 1.8 3 1.0 71.9 519 1.0 93.02 17 2.0
Case3 91.20 263 265.0 57.1 74 11.0 57.4 1730 3.0 94.5 34 10.0
Case4 100.00 511 428.0 6.9 69 8.0 77.8 275 2.0 100.00 201 6.0

Average 89.66 274.0 251.0 21.9 48.7 6.67 69.0 841.3 2.0 95.8 84 6.0
Ratio 1.00 1.00 1.00 0.24 0.18 0.03 0.87 3.07 0.01 1.07 0.31 0.02
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Figure 10: Comparison among different settings on (a) aver-
age accuracy and (b) average false alarm.

framework without the L2 regularization, “w/o. Refine” denotes the
framework without the refinement classification and regression,
and "all" is our framework with entire techniques. The histogram
shows that with the encoder-decoder structure, we get 7% accuracy
improvement on average, which indicate that the encoder-decoder
structure gives a more efficient feature expression than the original
input. With the L2 regularization, we get 2.2% improvement in all
cases, which means under the same experiment settings, the L2
regulariation resolves the overfitting problem effectively. Compar-
ing the whole framework with the model without Refinement, the
model with Refinement reduces 59.2% of the false alarm and get
5.88% further improvement on accuracy.

5 CONCLUSION
In this paper, we have proposed an innovative end-to-end region-
based hotspot detection framework. Our feature extractor provides
a self-adaptive way perform feature transformation that is very
compatible with convolution neural networks and time saving.
The clip proposal network locates the potential hotspot in a re-
gression way, which is more efficient. We take advantage of L2
regularization’s property to prevent over-fitting and get higher per-
formance. Additionally, our classification and regression strategy
with refinement reduces false alarms and increases the accuracy
with a remarkable speed. The experimental results show that our
framework outperforms the current deep learning based models.
We hope this paper can give a new perspective on deep learning
based hotspot detection and provide a more powerful solution for
advanced design for manufactorability (DFM) research.

ACKNOWLEDGMENTS
This work is supported in part by The Research Grants Council
of Hong Kong SAR (Project No. CUHK24209017), National Key
Research and Development Program of China (2016YFB0201304),
and National Natural Science Foundation of China (NSFC) research
projects 61574046, 61774045.

REFERENCES
[1] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-matching

model with grid reduction for lithography hotspot detection,” IEEE TCAD, vol. 33,
no. 11, 2014.

[2] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Accurate process-
hotspot detection using critical design rule extraction,” in Proc. DAC, 2012.

[3] D. G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in nanoscale
lithography processes,” in Proc. DAC, 2009.

[4] D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography hotspot
detection with successively refined pattern identifications and machine learning,”
IEEE TCAD, vol. 30, no. 11, 2011.

[5] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “EPIC: Efficient prediction of IC manufac-
turing hotspots with a unified meta-classification formulation,” in Proc. ASPDAC,
2012.

[6] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography hotspot detec-
tion framework based on AdaBoost classifier and simplified feature extraction,”
in Proc. SPIE, vol. 9427, 2015.

[7] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-learning-based hotspot
detection using topological classification and critical feature extraction,” IEEE
TCAD, vol. 34, no. 3, 2015.

[8] B. Yu, J.-R. Gao, D. Ding, X. Zeng, and D. Z. Pan, “Accurate lithography hotspot de-
tection based on principal component analysis-support vector machine classifier
with hierarchical data clustering,” JM3, vol. 14, no. 1, 2015.

[9] T. Matsunawa, B. Yu, and D. Z. Pan, “Laplacian eigenmaps-and bayesian
clustering-based layout pattern sampling and its applications to hotspot detection
and optical proximity correction,” JM3, vol. 15, no. 4, 2016.

[10] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in lithography
hotspot detection with information-theoretic feature optimization,” in Proc. IC-
CAD, 2016.

[11] Y. Tomioka, T. Matsunawa, C. Kodama, and S. Nojima, “Lithography hotspot
detection by two-stage cascade classifier using histogram of oriented light prop-
agation,” in Proc. ASPDAC, 2017.

[12] H. Zhang, F. Zhu, H. Li, E. F. Y. Young, and B. Yu, “Bilinear lithography hotspot
detection,” in Proc. ISPD, 2017.

[13] T. Matsunawa, S. Nojima, and T. Kotani, “Automatic layout feature extraction for
lithography hotspot detection based on deep neural network,” in SPIE Advanced
Lithography, vol. 9781, 2016.

[14] M. Shin and J.-H. Lee, “Accurate lithography hotspot detection using deep con-
volutional neural networks,” JM3, vol. 15, no. 4, 2016.

[15] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware lithography hotspot
detection: a deep learning approach,” JM3, vol. 16, no. 3, 2017.

[16] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout hotspot detection
with feature tensor generation and deep biased learning,” IEEE TCAD, 2018.

[17] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with
lithography-guided generative adversarial nets,” in Proc. DAC, 2018.

[18] W. Ye, Y. Lin, M. Li, Q. Liu, and D. Z. Pan, “LithoROC: lithography hotspot
detection with explicit ROC optimization,” in Proc. ASPDAC, 2019.

[19] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-layer layout
hotspots with adaptive squish patterns,” in Proc. ASPDAC, 2019.

[20] A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for physical
verification and benchmark suite,” in Proc. ICCAD, 2012.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proc. CVPR, 2016.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Proc. NIPS, 2012.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Proc. NIPS, 2015.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD:
Single shot multibox detector,” in Proc. ECCV, 2016.

[25] R. O. Topaloglu, “ICCAD-2016 CAD contest in pattern classification for integrated
circuit design space analysis and benchmark suite,” in Proc. ICCAD, 2016.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “TensorFlow: A
system for large-scale machine learning,” in Proc. OSDI, 2016.


