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ABSTRACT
Layout hotspot detection is of great importance in the physical
verification flow. Deep neural network models have been applied
to hotspot detection and achieved great successes. The layouts can
be viewed as binary images. The binarized neural network can
thus be suitable for the hotspot detection problem. In this paper
we propose a new deep learning architecture based on binarized
neural networks (BNNs) to speed up the neural networks in hotspot
detection. A new binarized residual neural network is carefully
designed for hotspot detection. Experimental results on ICCAD
2012 Contest benchmarks show that our architecture outperforms
all previous hotspot detectors in detecting accuracy and has an 8x
speedup over the best deep learning-based solution.
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1 INTRODUCTION
The lithographic printability is one of the most critical issues in
nano-scale integrated circuits. Although various resolution en-
hancement techniques have been proposed to improve the printabil-
ity in the past years, there still exist sensitive layout patterns which
would lead to manufacture defects. These lithographic hotspots
should be detected and fixed at early design stages.

Two classes of hotspot detection approaches have been proposed
recently: pattern matching-based and machine learning-based ap-
proaches. The pattern matching-based methods characterize the
hotspots as explicit patterns and identify the hotspots by matching
these patterns. In [1][2], the hotspots are encoded by strings and
modified transitive closure graphs. In [3], a graph is used to rep-
resent the layout. The hotspots are encoded as the critical “faces”
of the graph. In [4], density-based layout encoding, principle com-
ponents analysis (PCA) are integrated to detect the hotspot. In [5],
a tangent space-based distance metric is proposed to classify the
hotspot patterns. Generally, pattern matching-based approaches
are relatively fast, but impossible to detect the unseen patterns.

To address this problem, machine learning-based approaches
have been proposed recently. In the machine learning-based ap-
proaches, implicit models are built by learning from the existing
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training data. It is possible to detect the unseen hotspots through the
generalization capacities of the machine learning models. However,
the false alarm issues should be carefully treated in the machine
learning approaches [6][7]. In [8][9][10], the neural network and
Support Vector Machine (SVM) are proposed for hotspot detection.
In [11], Adaboost and decision tree are adopted for fast hotspot
detection. In [12], multi-kernel support vector machine and crit-
ical feature extraction are adopted for hotspot detection. In [13],
unsupervised SVM model and histogram-based layout representa-
tionto are applied to predict hotspots. In [14], optimized concentric
circle sampling (CCS) feature [15] and online learning scheme are
proposed for hotspot detection.

Deep neural network have demonstrated great successes in the
image classification, object detection tasks in the community of
computer vision. In [16], a convolutional neural network (CNN) ar-
chitecture is proposed for the hotspot detection. It can achieve nice
balance between the accuracy and the suppression of false alarms.
The features of the hotspots are represented as the truncated coeffi-
cients of the discrete cosine transforms of the patterns. And floating-
point arithmetic is employed in the convolutional neural network ar-
chitecture. However, the discrete cosine transforms would miss the
spatial information of the patterns and the floating-point arithmetic-
based neural network would be computation-intensive.

The layouts can be viewed as binary images. The binarized neu-
ral network might thus be suitable for constructing an efficient
hotspot detector. In this paper we propose a new deep learning
architecture based on binarized neural networks (BNNs) to speed
up the neural networks in hotspot detection. The down-sampled
images of the patterns are taken as the inputs directly, and the
spatial information of the patterns can be fully exploited in our
approach. A new binarized residual neural network is carefully
designed for hotspot detection. Compared with the floating-point
arithmetic-based neural network, the binarized neural networks
are computationally efficient. Experimental results on ICCAD 2012
Contest benchmarks show that our architecture outperforms all
previous hotspot detectors in detecting accuracy and has an 8x
speedup over the best deep learning-based solution.

The rest of this paper is organized as follows. In section 2, the
background of hotspot detection is presented. In section 3, we
propose the BNN-based hotspot detection method. In section 4,
experimental results are shown to demonstrate the efficiency of the
proposed method. In section 5, we conclude the paper.

2 BACKGROUND
In this section, we will present the problem formulation of layout
hotspot detection and review the background of binarized neural
networks.

2.1 Problem Formulation
Lithographic process in chip manufacturing may involve various
variations, which can cause potential open or short circuit failures
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Table 1: Confusion Matrix of Hotspot Detection Problems

Prediction Real
Non-hotspot Hotspot

Non-Hotspot # TN # FN
Hotspot # FP # TP

and result in performance degradation and yield reduction. Lay-
out patterns that are sensitive to process variations are defined as
hotspots.

In hotspot detection process, the most important issue is to cor-
rectly detect as many hotspots as possible. Identifying an instance
as a hotspot which is non-hotspot should also be avoided. The fol-
lowing metrics are used to evaluate the performance of the hotspot
detector.

Table 1 shows the confusion matrix of the hotspot detection
problem, where TN denotes True Negative, FN denotes False Neg-
ative, FP denotes False Positive and TP denotes True Positive. We
have the following definitions.

Definition 2.1. Accuracy: The ratio of correctly predicted hotspots
among the set of actual hotspots [17].

Accuracy =
# TP

# TP + # FN (1)

Definition 2.2. False Alarm: The number of incorrectly predicted
non-hotspots [17].

False Alarm = # FP (2)

Definition 2.3. ODST: Abbreviation of Overall Detection and
Simulation Time. The sum of the lithography simulation time for
layout patterns detected as hotspots (including real hotspots and
false alarms) and the learning model evaluation time [14].

ODST = (# FP + # TP)tls
+(# TN + # FN + # FP + # TP)tev (3)

where tls is lithography simulation time per instance and tev is the
model evaluation time per instance.

With the above definitions, the hotspot detection problem is
formulated as follows.

Problem 1. Hotspot Detection: Given a dataset that contains
hotspot and non-hotspot instances, train a classifier that can maxi-
mize the accuracy and minimize the false alarm.

2.2 Binarized Neural Networks
In recent years, deep convolution neural networks [18] have led
to a series of breakthroughs in various aspects of computer vi-
sion including image classification, object detection and semantic
segmentation. Recently they are also adopted in hotspot detec-
tion problems [16]. However deep neural networks often suffer
from over-parametrization and enormous redundancy in their mod-
els which can result in enormous computational and storage con-
sumption [19]. Parameter quantizing is usually applied to alleviate
this problem because high precision filters such as 32-bit floating-
point weights are not necessary for deep neural networks. Thus the
weights can be quantized to low bit with acceptable accuracy loss.
It is demontrated in [20] that a sparse neural network with +1/0/-1
weights can be trained in polynomial time. 32-bit floating-point ac-
tivations are quantized to 8-bit fixed-point integers in [21]. Neural
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Figure 1: Difference between Real-valued Neural Networks
and Binarized Neural Networks

networks with 3-bit activations and ternary weights are proposed
in [22].

Binarized neural network (BNN) is a special type of parameter
quantizing method because the weights are extremely quantized
to 1 bit. Figure 1 shows the difference between Real-valued Neural
Networks and Binarized Neural Networks. Due to precision loss
of parameters, BNNs were believed to face serious performance
degradation [23]. However, expectation back propagation (EPB) is
proposed in [24] to train a high-performance BNN. In BinaryNet
[25, 26], real-valued weights are used for binarization and they are
updated ignoring the binarization in the back propagation process.
A BNN is obtained by re-training a trained neural network with
binary weights and binary inputs in [27]. [28] adopts a new way of
binarizing parameters and activations and achieves huge advance
in large datasets such as ILSVRC [29] (ImageNet Large Scale Visual
Recognition Competition) 2012.

BNNs are inherently suitable for hardware implementation be-
cause binarization replaces floating-point operations with binary
operations which can be very efficiently operated in logic circuits
such as FPGA and ASIC. It also reduces the storage and memory
bandwidth requirements which is suitable for low-power embedded
implementation. An FPGA-based BNN accelerator synthesized from
C++ to Verilog is implemented in [30]. An architecture based on the
two-stage arithmetic unit (TSAU) is proposed in [31] to implement
the low-bit CNN on FPGA. A BNN accelerator on the Xeon+FPGA
platform is implemented in [32].

3 PROPOSED BNN-BASED HOTSPOT
DETECTOR

Different from common RGB images and grayscale images, layout
patterns are inherently binarized. Thus the BNN might be suitable
for classifying the hotspots and non-hotspots. A BNN-based ar-
chitecture is carefully designed to detect layout hotspot efficiently
considering the binarization property of the layout patterns. We
will present the details of the proposed BNN-based hotspot detector
in this section.
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Figure 2: Redesigned Binarized Network based on Residual Network

3.1 Network Architecture
With networks going deeper, some problems begin to influence the
convergence of the network like gradient vanishing/exploding [33]
and accuracy saturation. ResNets [34] bypass information between
layers via identity connections called “shortcut connections” to
relieve the effect of the accuracy saturation problem.

Based on the philosophy of ResNet, we design our binarized ar-
chitecture to fit the hotspot detection problem. Considering the size
of the training set and the computational complexity, a too deep net-
work architecture is not appropriate. The network is preliminarily
set to be with fewer than 20 layers.

Our baseline network architecture is the ResNet-18 model. The
convolution layers of the original model are replaced by binary
convolution layers whose input/output tensors and weights are
binarized. We use two 3 × 3 binary convolution layers as the basic
building block. To further reduce the time complexity and address
the over-fitting problem, the number of layers is reduced and the
number of filters of each layer is readjusted. We generally follow
the rule that the deeper a layer is, the more filters it contains and
keep as few filters as possible for all layers. Finally, we derive a 12-
layer network which achieves high speed and satisfies the accuracy
requirement at the same time.

Our network architecture is shown in Figure 2. The 1 × 1 convo-
lution blocks in the shortcut connections appear where the input
tensor and output tensor of a residual block do not have the same
shapes. The input tensor is convolved with 1 × 1 kernel to acquire
the same tensor shape as the output tensor so that they can be
summed at the end of a residual block.

In the network architecture, each convolution block consists of
three cascaded layers: Batch Normalization [35], Binarizing and
Binary Convolution. Figure 3 shows the structure of a convolution
block. Batch Normalization layer normalizes the input tensor by
its mean and variance. Binarizing layer binarizes the input tensors
as the input of the next binary convolution layer. Following the
practice in [28], the Batch Normalization layer is placed before
the binarizing layer to further reduce the information loss due to
binarization.

3.2 Binarization Approach
An L-layer CNN architecture can be defined as <W,T , ⊗, f >.W
is the set of weights of the network. Wl,k is the k-th convolution
filter of the l-th layer. Wl,k ∈ Rcin×wk×hk , where (cin ,wk ,hk )
denote the number of input channels, the width and height of the

3x3 B_conv, 64 Binarizing

BatchNorm

Binary Convolution
Output channel: 64

Kernel size: 3x3

Figure 3: Typical BNN block structure

convolution kernel respectively. T is the set of input tensors of the
network, whereTl is the input tensor of the l-th layer and the output
tensor of the (l − 1)-th layer as well. Tl ∈ Rcin×win×hin , where
(cin ,win ,hin ) represents the channel, width and height of the input
tensor. f and ⊗ represents activation function and convolution
computation so that Tl+1,k = f (Tl ⊗ Wl,k ).

After binarization, the parameters and input tensors of the layers
become binary. The corresponding L-layer BNN can be defined as <
B,AB ,I,AT ,⊛, f >. The binary filterWB ∈ B and scaling factor
αB ∈ AB are used to estimate the original full-precision filterW ∈

W. The binary input tensor TB ∈ I and the scaling factor αT ∈

AT are used to estimate the original input tensor Tin ∈ T . Here,
WB ∈ {+1,−1}cin×wk×hk and TB ∈ {+1,−1}cin×win×hin . αT ∈

Rcin×win×hin ,αB ∈ R+. ⊛ represents the binarized convolution
operation, which is much faster than the full-precision convolution.

The convolution operation consists of shift kernel operations
and dot product operations. The weight filter slides over the input
tensor and the output is the inner product of the kernel vector and
the vector of corresponding block in the input tensor. To minimize
the binarization loss of the convolution operation, the gap between
inner products of full-precision input tensors and weight filters
and those of binarized input tensors and weight filters needs to be
minimized.

Let W be the kernel which is an n-element vector and X be
the vector of the corresponding block in the input tensor, n =
wk × hk . Let WB and XB be the binarized kernel and input vector
and αW ,αX be the corresponding scaling factors so that W ⊙ X ≈

αWWB ⊙ αXXB . Here, W,X ∈ Rn , WB ,XB ∈ {−1,+1}n and
αW ,αX ∈ R+.
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The binarizing method we adopt is similar to XNOR-Net’s [28]
except that different scaling factors for input vector in different
input channels are adopted which can estimate the input tensor
more accurately.

The binarization loss of inner product operation Li is defined in
Equation (4).

Li (WB ,XB ,αW ,αX ) = ∥W ⊙ X − αWWB ⊙ αXXB ∥
2 (4)

Minimizing binarization loss can be rewritten to the optimization
problem in Equation (5).

W∗
B ,X

∗
B ,α

∗
W ,α

∗
X = argmin

WB,XB,αW ,αX
Li (WB ,XB ,αW ,αX ) (5)

To simplify the problem, we define C =W ⊙X, CB =WB ⊙XB
and α = αW αX , where C ∈ Rn , CB ∈ {−1,+1}n and α ∈ R+.
Equation (5) can be rewritten as:

C∗
B ,α

∗ = argmin
CB,α

∥C − αCB ∥
2 (6)

Solving the optimization problem, we have:
C∗
B =siдn(C)

α∗ =
1
n
∥C∥l1

(7)

SinceW∗
B and X∗

B are independent, we decompose C∗
B and α∗

to getW∗
B ,X

∗
B ,α

∗
W ,α

∗
X :

W∗
B = siдn(W), X∗

B = siдn(X)

α∗W =
∥W∥l1

n
, α∗X =

∥X∥l1
n

(8)

According to the calculations above, the estimated weight W̃ and
estimated corresponding input vector X̃ are:

W̃ =
1
n
siдn(W)∥W∥l1

X̃ =
1
n
siдn(X)∥X∥l1

(9)

3.3 Training Binarized Networks
Like normal CNNs, we train our network with Mini-batch Gradi-
ent Descent (MGD) [36] approach which can utilize computation
resources more efficiently than Stochastic Gradient Descent (SGD).
A group of instances are randomly picked from the training set to
perform forward and backward process in each training iteration.

During training process, the main object is to update the real-
valued kernel W. Back-propagation [37] is widely applied to calcu-
late gradients when training neural networks. Modern deep learn-
ing libraries can easily calculate the gradients of the kernels of a
normal CNN with back-propagation. The key difference between
CNN and BNN architecture is the sign function siдn(r ). The deriva-
tive of sign function is zero almost everywhere which can interdict
the propagation of the gradients. To compute the gradient for sign
function, we adopt the straight-through estimator introduced in
[26] which considers the saturation effect

∂siдn(x)

∂x
= 1∥x ∥<1 (10)

where 1∥x ∥<1 is the indicator function which is defined as follows.

1∥x ∥<1 =

{
1 ∥x ∥ < 1
0 else

(11)

Adopting binarization approach, in forward process the esti-
mated convolution kernel W̃ is

W̃ = α∗WW∗
B (12)

whose gradient can be calculated via standard backward propaga-
tion according to Equation (10).

The gradients of the real-valued weights is calculated in Equation
(13) via chain rule.

∂l

∂W
=
∂l

∂W̃
∂W̃
∂W

=
∂l

∂W̃

∂( 1n ∥W∥l1siдn(W))

∂W

=
∂l

∂W̃
(
1
n
+ α∗W 1∥W ∥<1)

(13)

where ∂l
∂W and ∂l

∂W̃
denote the gradents of the loss function l with

respect to the full-precision weightW and estimated weight W̃.

Algorithm 1 Training a BNN
Input: (T0,Y ): a minibatch of input tensors and labels;
1: l(Y ,Yout ): loss function;
2: Wt : current real-valued weight;
3: L: number of layers;
4: n: kernel size of layers;
5: ηt : current learning rate;

Output: Wt+1: updated real-valued weight; ηt+1: updated learn-
ing rate.

6: 1. Forward Process:
7: for k = 1 to L do
8: Bt

k = BinarizeWeight(Wt
k )

9: Tk+1 = BinarizeInput(BatchNorm(Tk ))⊛ Bt
k

10: end for
11: Yout = TL+1
12: 2. Backward Process:
13: for k = L to 1 do
14: ∂l

∂Tk
= BinaryBackward( ∂l

∂Tk+1
,Tk )

15: ∂l
∂Bt

k
= BinaryBackward( ∂l

∂Tk+1
,Bt

k )

16: ∂l
∂Wt

k
= 1

nl
(1 + ∥Wt

k ∥l11∥Wt
k ∥<1)

∂l
∂Bt

k
17: end for
18: 3. Update Parameters:
19: Wt+1,ηt+1 = Update(Wt , ∂l

∂Wt ,η
t )

20: return Wt+1,ηt+1

The procedure for training a BNN is shown in Algorithm 1. The
called procedures are listed as follows.

• BatchNorm(): Batch Normalization function;
• BinarizeWeight(): weight binarization function;
• BinarizeInput(): input tensor binarization function;
• BinaryBackward(): binarized backward function;
• Update(): optimizer for updating weights and learning rates.

In Algorithm 1, we binarize the convolution kernel and input
tensor and compute the output from first to the L-th layer firstly.
Next, we calculate the gradients of the binarized weights ∂l

∂Bt

using standard back propagation algorithm. Then, we calculate the
gradients of the real-valued weights ∂l

∂Wt according to Equation
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(13). Lastly we update the parameters and learning rate with an
appropriate optimizer, e.g., NAdam [38] in this paper.

3.4 Implementation Details
We present the implementation details in this subsection.

3.4.1 Data Preprocessing. Different from normal image classifica-
tion problems, the hotspots might be anywhere in the input layout
clips so the widely used randomly cropping augumentation method
is not adopted in this paper. Note that the input layout clips are
all square. The input binary images are simply down-sampled to
[ls , ls ]. After careful tuning, ls is finally set as 128 which achieves
a nice balance between accuracy and speed. Random horizontal
and vertical flipping are performed for training. Compared with
preprocessing methods adopted in previous works such as DCT-
based feature tensor extraction [16] and Maximal Circle Mutual
Information (MCMI) scheme [14], our preprocessing method keeps
the most spatial information of the original patterns.

3.4.2 Training Hyperparameters. The real-valued kernels are ini-
tialized with Xavier initializer [33]. We do not use dropout [39]
following the practice in ResNet paper [34].

The optimizer adopted for training themodel is NAdam (Nesterov-
accelerated Adaptive Moment Estimation) optimizer [38], which
combines Adam (Adaptive Moment Estimation) optimizer [40] and
NAG (Nesterov Accelerated Gradient) optimizer [41]. We train our
model using mini-batches of size 128. We set the initial learning
rate as 0.15. The learning rate decay scheme is to exponentially
decay each time the validation loss plateaus after an epoch which
is used in [42].

3.4.3 Other Details. During the binary convolution, each time the
binary convolution kernalWB ∈ {−1,+1}Rcin×wk×hk shifts over
the input tensor Tin ∈ Rcin×win×hin , the scaling factor αX for the
corresponding input vector X ∈ Rcin×wk×hk needs to be recom-
puted. Because the stride of convolution is usually lower than the
kernel size, there are overlaps between these input vectors, which
leads to a large number of redundant computations. To address this
problem, we first compute |Tin | which is the scaling factor of the
input tensor for every single pixle. For kernels whose shape is not
1 × 1, these scaling factors needs to be averaged by the shape of
the kernel. Next, we construct a matrix K with shape of [wk ,hk ]
whose every element is 1

wkhk
. Matrix K is used to average |Tin |

locally by convolving |Tin | with K for each channel. The scaling
factor for input tensor is αT :

αT (c) = |Tin (c, :, :)| ⊗ K (14)
where ⊗ represents full-precision convolution. The final output of
the binary convolution layer is expressed as

Tout = αB (siдn(Tin )⊛ siдn(WB )) ⊙ αT (15)
where αB is the scaling factor for the kernel and ⊛ represents
the binary convolution which is much faster than full-precision
convolution.

We use softmax cross entropy as our loss function. The hospot
instance has a label of y∗h = [0, 1] and the non-hotspot instance
has a label of y∗n = [1, 0]. Note that the dataset is quite biased
which contains much more non-hospot instances than the hospot
instances. To further improve the detecting accuracy of our model,
the biased learning in [16] is adopted after the model is trained with
Algorithm 1. The trained model is finetuned with non-hotspot’s
label changed toy∗n = [1−ϵ, ϵ] and hotspot’s label keeps the same. ϵ

Table 2: ICCAD-2012 benchmark statistics

Benchmark #Train HS #Train NHS #Test HS #Test NHS
ICCAD 1204 17096 2524 13503

Table 3: Performance comparisons with state-of-the-art
hotspot detectors

Method FA# Runtime (s) ODST (s) Accu (%)
SPIE’15 [11] 2919 2672 53112 84.2
ICCAD’16 [14] 4497 1052 70628 97.7
DAC’17 [16] 3413 482 59402 98.2
Ours 2787 60 52970 99.2

is the bias term. In our experiment, we set ϵ = 0.2 . The bias learning
method improves the detecting accuracy but also increases the false
alarms at the same time.

4 EXPERIMENTAL RESULTS
All our training and testing code is built on MXNet [43] referring
to the implementation in [44]. We train and test our model on a
machine with a 4-core Intel CPU and a Nvidia GTX 1060 GPU.

Following the practice in [16], we merge all the patterns of the
ICCAD 2012 contest to verify the scalability of our model. The sta-
tistics of the dataset is listed in Table 2. For training data, columns “#
Training HS” and “# Training NHS” show the numbers of hotspots
and non-hotspots in training set respectively. For testing data,
columns “# Testing HS” and “# Testing NHS” give the numbers
of hotspots and non-hotspots in testing set.

The experimental results of our model and three state-of-the-art
works [11, 14, 16] are shown in table 3. In the experiment, four
metrics, i.e., false alarm (column “FA#”), evaluating time (column
“Runtime”), overall detection simulation time (column “ODST”) and
detecting accuracy (column “Accu”) are used to evaluate the per-
formance of the hotspot detectors. Our model and [16]’s model is
accelerated with a middle-end graphic card Nvidia GTX1060. Fol-
lowing [45], we set the lithography simulation time per instance
tls in Equation (3) as 10 seconds to calculate the ODST.

The experimental results show that our model achieves the best
performance in the ICCAD-2012 testcase. The detecting accuracy
of our model is 99.2% compared to 84.2% of [11], 97.7% of [14] and
98.2% of [16]. We also get the fewest 2787 false alarms compared to
2919 of [11], 4497 of [14] and 3413 of [16]. The evaluating time of
our model is 60s which is 8 times faster than [16]’s deep learning-
based model running on the same platform. The ODST of our model
is the lowest among the four listed methods as well.

5 CONCLUSION
Deep neural networkmodels have been applied to hotspot detection
and achieved great successes. However, the deep neural network
models can also lead to enormous computational and storage con-
sumption. In this paper, considering the binary characteristic of
the lithography layout, we propose a BNN-based architecture to
address this problem. The down-sampled images of the patterns
are taken as the inputs directly, and the spatial information of the
patterns can be captured in our approach. The experimental results
on ICCAD 2012 Contest benchmarks show that our architecture
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outperforms previous hotspot detectors and achieves an 8x speedup
over the best deep learning-based solution. Note that BNNs aremore
compatible with digital circuits than traditional CNNs. Thus the
more efficient hardware-accelerated hotspot detectors are expected.
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