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ABSTRACT
As an emerging manufacture technology, block copolymer directed
self-assembly (DSA) is promising for via layer fabrication. Mean-
while, redundant via insertion is considered as an essential step for
yield improvement. For better reliability and manufacturability, in
this paper, we concurrently consider DSA guiding template assign-
ment with redundant via and dummy via insertion at post-routing
stage. Firstly, by analyzing the structure property of guiding tem-
plates, we propose a building-block based solution expression to
discard redundant solutions. Then, honoring the compact solution
expression, we construct a conflict graph with dummy via insertion,
and then formulate the problem to an integer linear programming
(ILP). To make a good trade-off between solution quality and run-
time, we relax the ILP to an unconstrained nonlinear programming
(UNP). Finally, a line search optimization algorithm is proposed
to solve the UNP. Experimental results verify the effectiveness of
our new solution expression and the efficiency of our proposed
algorithm.

1 INTRODUCTION
As an emerging technology, DSA is considered as the most promis-
ing for the via layers [1, 2]. Furthermore, previous work has made
many significant improvements on manufacturing, modeling, sim-
ulation and graphoepitaxy of DSA [3]. These improvements enable
DSA technology to pattern vias. In DSA, block copolymers with
right proportion would form cylinders, and the remainder material
can be used to fabricate contacts/vias after removing cylinders. To
generate irregularly distributed vias using DSA, guiding templates
including vias are required [4, 5]. These guiding templates are man-
ufactured by the conventional optical lithography, and thus the
resolution is limited by the pattern pitch.

Due to various reasons such as random defects, cut misalignment,
electro migration and thermal/mechanical stress [6], a single via
may fail partially or completely. Via failure heavily impacts on the
functionality and yield of a design [7, 8]. Up to now, redundant via
(RV) insertion has been considered as an essential step to reduce via
failure, and then improves circuit reliability and yield [9, 10]. The
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Figure 1: (a) A layout; (b) A redundant via insertion and guid-
ing template assignment; (c) An irregular guiding template;
(d) A result with dummy via insertion.

redundant via insertion technique is that a redundant via should be
inserted next to every via [11]. In addition, an inserted redundant
via should not cause any circuit short, that is, an inserted redundant
via should not overlap with any metal wire from other nets of wires.
Given a layout with three vias as in Figure 1(a), we can insert
redundant vias r2 and r3 for vias v2 and v3, respectively. Since
the surrounding positions of v1 are illegal, we can not insert any
redundant via for v1.

To improve the resolution, adjacent vias (including redundant
vias) may be put into a multi-hole guiding template [12–14]. Nat-
urally, we should assign a guiding template for each via and re-
dundant via. Figure 1(b) shows a guiding template assignment for
the layout in Figure 1(a). In Figure 1(b), via v3 and redundant via
r3 are assigned to a 1 × 2 hole template, and via v1 is guided by
a single-hole template, while via v2 and redundant via r2 cannot
be guided and patterned due to the resolution limit. For the five
vias and redundant vias in Figure 1(a), a desirable result is that
they can be assigned to a same guiding template for patterning as
in Figure 1(c). However, this kind of irregular guiding template in
Figure 1(c) has a higher probability of generating overlay error. To
guarantee the overlay accuracy, only some regular guiding tem-
plates are available, the details will be introduced in Section 2.1. If
we insert a dummy via (DV) as in Figure 1(d), then the five vias and
redundant vias can be guided by a regular 2 × 3 template.

In the traditional design process, the redundant via insertion
and the manufacture of via layers are handled in two independent
stages. Fang et al. [15] first concurrently considered the redun-
dant via insertion and DSA guiding template assignment problem.
For this concurrent consideration, both the number of insertable
vias (insertion rate, IR) and the number of manufacturable vias
(manufacture rate, MR) are increased.
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To improve both of the insertion rate and the manufacture rate,
the mainstream techniques in previous works [16–19] can be con-
cluded as the following two types: increasing resolution space by
multiple patterning [16, 17]; improving the degree of freedom of
redundant vias and guiding templates [18, 19]. For the second way,
Fang et al. [18] investigated the redundant via insertion and DSA
guiding template assignment problem with wire bending. By local
perturbing some metal wires, it inserts redundant vias at the cost
of increasing the wirelength. But in the advanced 1-D metal layer
design, wire bending are unwarrantable. To avoid this drawback,
Hung et al. [19] studied the problem with dummy via insertion,
in which some dummy vias are inserted for assisting formation of
guiding templates.

After using dummy via insertion, the layout is more free for
inserting redundant vias and using multi-hole guiding templates,
which achieves a higher insertion rate and manufacture rate. But
two crucial challenges are involved: (1) how to express the solution
of more effectively; and (2) how to solve the problemwith extremely
large-scale solution space more efficiently. In [19], the authors
generated all guiding template candidates for all the redundant via
candidates, dummy via candidates, and immediate neighbor vias.
The generated guiding template candidates are utilized to express
solution space, which is extremely large. To solve the problem, the
authors of [19] proposed an ILP formulation. Unfortunately, solving
ILP may be impractical for large scale and dense circuit layouts. It is
of importance to derive a more effective and efficient solution space
as well as its optimization method. In this paper we are tackling this
challenge, and our main contributions are summarized as follows.
• To discard redundant solutions, we introduce a building-
block based manner instead of guiding template candidate to
express solution. With the help of building-blocks, we model
the DSA guiding template assignment with redundant via
and dummy via insertion problem to a new ILP formulation
based on a conflict graph.
• With a sigmoid function, we relax the ILP to an UNP to make
a good trade-off between solution quality and runtime. We
develop a line search optimization algorithm to solve the
UNP, which is a local optimal algorithm.
• Experimental results verify the efficiency and effectiveness
of our solution expression and optimization method. Specifi-
cally, our algorithm achieves comparable experimental re-
sults with a state-of-the-art work, and saves 92% runtime.

The rest of this paper is organized as follows. In Section 2, we
introduce the related concepts and the problem formulation. In Sec-
tion 3, we discuss the proposed graph model. In Section 4, we detail
our ILP formulation and local optimal algorithm for the problem.
In Section 5, we list experimental results, followed by conclusion
in Section 6.

2 PRELIMINARIES
2.1 Guiding Template Assignment
For the DSA technique, template is used to guide the holes. Since
irregular guiding template has a higher probability of generating
overlay error, to guarantee the overlay accuracy, we only use some
regular guiding templates with few holes. In this paper, we fol-
low [15] designing seven types of guiding templates as shown in

Figure 2: Seven usable types of guiding templates.

Figure 2. In addition, for high resolution and focal depth of guid-
ing templates, the spacing between neighboring guiding templates
should not be less than the optical resolution limit spacing ds . Gen-
erally,ds is set as not less than the distance between a redundant via
and its related via, and not less than the hole pitch in a guiding tem-
plate. We need to decide the assignment of guiding templates such
that more vias and redundant vias can be surrounded by guiding
templates.

2.2 Dummy Via Insertion
Vias or redundant vias manufactured by DSA technique must be
guided by some templates. The most popular manufacture tech-
nique for these guiding templates is conventional lithography. For
some dense structures in a layout, guiding templates may not be
manufactured due to the limitation of optical resolution. In addition,
the vias or redundant vias guided by these unmanufactured guiding
templates cannot be formed by DSA block copolymer. An effective
trick is adding some dummy vias (DV), such that the structure of
vias matches a used guiding template. This has been illustrated as
in Figure 1(d).

In a circuit, dummy via does not connect to any wire, which is
only used for filling the guiding template. The insertion of dummy
vias should satisfy the following two conditions: i) the insertion can
make up a multi-hole (not less than three holes) guiding template
with other vias or redundant vias; ii) it can improve the insertion
rate or manufacture rate.

After finding the possible redundant via candidates (RVC), we
should find all potential guiding template assignments for every
via. In a grid graph, if all grid points covered by a multi-hole (not
less than three holes) guiding template are vias or redundant vias,
then the guiding template does not need dummy vias; otherwise,
every empty grid point needs a dummy via for forming a complete
guiding template. If these needed dummy vias on the empty grid
points satisfy the above two conditions, then these empty grid
points are marked as dummy via candidates (DVC).

2.3 Problem Statement
The problem aims at inserting a redundant via for every via, and
manufacturing all vias and their redundant vias by the DSA tech-
nique with the help of dummy via insertion. The redundant via
insertion rate and the manufacture rate are considered as evaluation
indicators in [15, 16]. The redundant via insertion and DSA guiding
template assignment with dummy via insertion (RDD) problem is
formulated as follows:

Problem 1 (RDD). Given a post-routing via layers layout, the us-
able types of guiding templates, and the optical resolution limit
spacing ds , insert a redundant via for every via, assign guiding
templates for vias, redundant vias and dummy vias, such that: i)
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Figure 3: Building-blocks.

Figure 4: All possible combinations of bblocks to form the
seven types of guiding templates.

the inserted redundant vias are legal; ii) the spacing between neigh-
boring guiding templates should not be less than ds . The objective
is maximizingMR + β · IR, where β is a weighting parameter.

3 CONFLICT GRAPH CONSTRUCTION
After finding all possible redundant via candidates and dummy
via candidates, previous work directly checks all the possible guid-
ing template assignments. However, detecting all possible guiding
template assignment would spend much calculating time. In addi-
tion, solving RDD problem with extremely large number of guiding
template assignments is also time-consuming.

To obtain a compact solution expression, we introduce a concept
of building-block (bblock). A bblock is composed of some vias and
some candidates, and bblocks can be used to compose various types
of guiding templates. Nine types of bblocks are shown in Figure 3,
where bblock_1 includes a via; bblock_2 includes a redundant via;
bblock_3 includes a via and a redundant via; bblock_4 includes two
vias; bblock_5 includes two redundant vias; bblock_6 includes a
via and a redundant via in diagonal; bblock_7 includes two vias in
diagonal; bblock_8 includes two redundant vias in diagonal; and
bblock_9 includes six vias or redundant vias, which can be covered
by a six-hole guiding template. These types of bblocks compose a
dictionary.

Then the seven types of usable guiding templates in Figure 2 can
be formed by grouping some bblocks in the dictionary, as shown in
Figure 4. Here we only list the vertical cases and skip the horizontal
cases due to similarity.

A dummy via candidate (DVC)must belong to a guiding template.
At the DVC finding stage, we can easily find out which guiding
template a DVC belongs to. Given a result of finding redundant via
candidates as in Figure 5(a), we can identify all possiblebblocks as in
Figure 5(b), and these bblocks are regarded as vertices in the conflict
graph. Based on these vertices, we construct a conflict graph [17], as
shown in Figure 5(c). There are three types of edges in conflict graph:
1) Overlap edges EO : if bblocks i and j are overlap, then ei j ∈ EO ;
2) Conflict edges EC : if the distance between bblocks i and j is not
larger than ds and ei j < EO , then ei j ∈ EC ; 3) Template edges ET :
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Figure 5: (a) A layout; (b) All bblocks of the layout in Fig-
ure 5(a); (c) Conflict graph.
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Figure 6: Three kinds of conflict structures.

if bblocks i and j with ei j ∈ EC can be assigned simultaneously to
a guiding template without any design error, and at least one of i
and j is not S1, then ei j ∈ ET . Obviously, ET ⊆ EC . Then, a conflict
graph CG (V ,E) is constructed, where v ∈ V is bblock and ei j ∈ E
is an edge and E = (EC − ET ) ∪ EO .

In Figure 5(c), the black edges are the overlap edges, the red
edges are the conflict edges, and the green dotted edges are the
template edges. From Figure 5(a), we know bblocks a and d are
overlapped with each other at v1, hence there is an overlap edge
between them as in Figure 5(c). The distance between bblocks a
and e is not larger than ds , hence there is a conflict edge between
them. Since bblocks a and c can be assigned to a 2 × 2 hole guiding
template as in Figure 5(c), there is a template edge between a and c .

4 PROPOSED ALGORITHMS
In this section, we first formulate RDD problem into an ILP. And
then, we relax the ILP into an UNP, and propose a line search based
optimization algorithm to solve the UNP.

4.1 ILP Formulation
In conflict graph, if two bblocks i and j are overlapped with each
other, i.e., ei j ∈ EO , then only one of the them can be patterned.
In addition, if two bblocks are within the optical resolution limit
spacing ds , i.e., ei j ∈ EC , then only one of them can be patterned
due to limitation of resolution, unless the two bblocks are assigned
into the same guiding template, i.e., ei j < ET .

If twobblocks i and j are connected by a template edge, then they
may be assigned to the same guiding template, but not necessarily.
Specially, for the structure shown in Figure 6(a), bblocks i and l



are connected to k by two template edges, but i , k and l cannot
be simultaneously assigned to a same guiding template, since we
do not have a guiding template with four holes aligned in a line
(same as the structures in Figure 6(b) and Figure 6(c)). We call these
unordered triplets (i , k , l ) as conflict structures, which are defined
as follow.

Definition 1 (Conflict Structure). The conflict structure is a struc-
ture composed of three bblocks i , k and l , in which eik and ekl are
template edges and there does not exist any edge between i and l .

We denote CS as the set of conflict structures. In addition, differ-
ent bblocks include different vias and redundant vias. The objective
of RDD problem is intend to maximizeMR + β · IR, i.e., maximizing
the weighted sum of the number of manufacturable vias and the
number of inserted redundant vias. Suppose the weights of a via
and a redundant via is 1 and β , respectively. We jointly consider
MR and IR by assigning weightwi to every bblock i as

wi = Nv + β · Nr , (1)
where Nv and Nr are the numbers of included vias and redundant
vias by bblock i , respectively. LetW be the set of weights, then the
conflict graph CG (V ,E) is weighted and written as CG (V ,E,W ).

Thus, we formulate RDD problem as following ILP:

max
x

∑
i ∈V

wixi (2)

s.t. xi + x j ≤ 1, ∀ei j ∈ E; (2a)
xi + xk + xl ≤ 2, ∀(i,k, l ) ∈ CS ; (2b)
xi ∈ {0, 1} , ∀i ∈ V . (2c)

In above ILP, Constraint (2a) indicates that, if there exists ei j ∈ EO
or ei j ∈ EC −ET between vertices i and j , then at most one of them
can be patterned; Constraint (2b) ensures that, if i , k and l compose
an conflict structure, then at most two of them can be patterned.

4.2 A Local Optimal Algorithm
It is time consuming to solve the ILP by commercial solver for a
large scale layout. In this subsection, we develop a fast algorithm
to obtain a local optimal solution of RDD problem.

Firstly, the ILP formulation of Problem (2) is equivalent to:

max
x

∑
i ∈V

wixi (3)

s.t. xix j = 0, ∀ei j ∈ E; (3a)
xixkxl = 0, ∀(i,k, l ) ∈ CS ; (3b)
xi ∈ {0, 1} , ∀i ∈ V , (3c)

wherew = (w1,w2, · · · ,wn )
⊤ ∈ Rn , x = (x1,x2, · · · ,xn )⊤ ∈ {0, 1}n ,

n = |V |. Since Constraints (3a) and (3b) are equality, they can be
directly incorporated in the objective function. That is, Problem (3)
can be further rewritten as following integer nonlinear program-
ming:

max
x

∑
i ∈V
{wixi

∏
j ∈V
ei j ∈E

(1 − x j )
∏
k,l ∈V

(i,k,l )∈CS

(1 − xkxl )} (4)

s.t. xi ∈ {0, 1} , ∀i ∈ V . (4a)

In (4), ei j ∈ E and (i,k, l ) ∈ CS are used to describe the relationship
among vertices. Let B = (Bi j ) ∈ {0, 1}n×n be the adjacency matrix
of the conflict graph CG. If ei j ∈ E, then Bi j = 1 and (1 − x j )Bi j =
(1−x j ); and if ei j < E, then Bi j = 0 and (1−x j )Bi j = 1. Moreover, we
use C = (Cikl ) ∈ {0, 1}n×n×n to represent the conflict structures in
layout. If (i,k, l ) ∈ CS , thenCikl = 1 and (1−xkxl )Cikl = (1−xkxl ),
otherwiseCikl = 0 and then (1−xkxl )Cikl = 1. The objective of (4)
can be more conveniently written using adjacent matrix and tensor
of CG as Problem (5).

max
x

∑
i ∈V
{wixi

∏
j ∈V

(1 − x j )Bi j
∏
k,l ∈V

(1 − xkxl )Cikl } (5)

s.t. xi ∈ {0, 1} , ∀i ∈ V . (5a)
Problem (5) is equivalent to Problem (2), and still falls to the

catogory of discrete formulation. To design amore efficient solution,
we further relax this problem into a continuous domain. First, we
introduce an auxiliary vector y = (yi ) ∈ R

n , and approximate the
constraint xi ∈ {0, 1}, ∀i ∈ V with the sigmoid function

xi ≈ σ (yi ) = (1 + e−γyi )−1. (6)
where γ is set to 8 in this paper for a sharper sigmoid function.
Then Problem (5) is approximated as

max
y

f (y) = (7)∑
i ∈V
{wiσ (yi )

∏
j ∈V

(1 − σ (yj ))Bi j
∏
k,l ∈V

(1 − σ (yk )σ (yl ))Cikl }.

If we obtain a solution y∗ of Problem (7), then the final solution x∗

is obtained by rounding the sigmoid function value σ (y∗i ) to the
nearest integer, ∀i ∈ V . Problem (7) is an UNP. Let
дi (y) = σ (yi )

∏
j ∈V

(1 − σ (yj ))Bi j
∏
k,l ∈V

(1 − σ (yk )σ (yl ))Cikl (8)

and дi = дi (y), then the objective of Problem (7) is

f (y) =
∑
i ∈V

wiдi .

We aim at finding a maximal solution y∗ ∈ Rn of Problem (7). At
each iteration t , the solution is updated by the following gradient
direction of f (y):

y(t+1) = y(t ) + α∇f (y(t ) ), (9)
where α is the step length, which is obtained by theWolfe-Powell in-
exact line searchmethod in [20]. Besides, [∇f (y(t ) )]i = ∂ f (y(t ) )/∂yi
is calculated by

[∇f (y(t ) )]i =γwiд
(t )
i {(1 − σ (y

(t )
i )) −

∑
j
Bi jσ (y

(t )
j ) (10)

−
∑
k

∑
l

Cikl
σ (y

(t )
k ) (1 − σ (y (t )k ))σ (y

(t )
l )

1 − σ (y (t )k )σ (y
(t )
l )

},

where д(t )i = дi (y
(t ) ). It can be shown that first order dynamic in

(9) increases f (y(t ) ) at every iteration t , and will converge to a
local optimum.

However, since the objective function of Problem (7) is highly
non-linear and non-concave, the above iteration is highly dependent
on the initial solution y(0) and may converge to an undesirable
local optimum. Hence, in order to obtain a better solution, the



iteration would be better starting from a good initial solution y(0) .
We propose an O( |V |) complexity algorithm to obtain a desirable
initial solution, as detailed in Algorithm 1.

Algorithm 1 Initial Solution Generation
Input: A connected component of CG (V ,E,W );
Output: Initial solution x(0) of ILP (2);
1: repeat
2: S ← {k | k ∈ argminl ∈Vwn (l )};
3: repeat
4: ∀k ∈ S , computews (k ); ▷ Equation (11)
5: x

(0)
i ← 1, where i = argmink ∈Sws (k );

6: for every j in V with eji ∈ E do
7: x

(0)
j ← 0, and V ← V − {j};

8: if j ∈ S , S ← S − {j};
9: end for
10: S ← S − {i}, and V ← V − {i};
11: until S = ∅
12: until V = ∅

In line 2 of Algorithm 1,wn (l ) is the number of vias and redun-
dant vias covered by bblock l . In line 4, the selection weightws (k )
of bblock k is calculated by

ws (k ) = dc (k ) − dt (k ), (11)
where dc (k ) is the number of conflict edges incident to bblock k ,
and dt (k ) is the number of template edges incident to bblock k .

After obtaining the desirable initial solution, we present our opti-
mization method for the ILP (2) in Algorithm 2, where the objective
value is increased at every iteration, and is converged to a maximal
solution. Experimentally, Algorithm 2 only takes a few iterations be-
fore achieving the convergence condition. Furthermore, we know
from (10) that every iteration of Algorithm 2 can be finished in
O(max{|V | · |E |, |V | · | |C| |0}), where | |C| |0 is the number of nonzero
elements in tensor C.

Algorithm 2 UNP Solver
Input: A connected component of CG (V ,E,W ), convergence

threshold δ = 10−4;
Output: Solution x∗ of ILP (2);
1: Initialize t ← 0;
2: Generate x(0) ; ▷ Algorithm 1
3: If x (0)i = 1, let y (0)i ← 1; otherwise, let y (0)i ← -1;
4: repeat
5: ∀i ∈ V , compute д(t )i ; ▷ Equation (8)
6: Obtain ∇f (y(t ) ); ▷ Equation (10)
7: α ← LineSearch(y(t ) );
8: y(t+1) ← y(t ) + α∇f (y(t ) );
9: t ← t + 1;
10: until | |∇f (y(t ) ) | | < δ

11: Get x∗i by rounding σ (y (t )i ) to the nearest integer, ∀i ∈ V .

We can achieve a local optimal result by performing Algorithm
2. In this paper, we skip the detailed proof due to space limitation.

In addition, as will be verified in experiments, if Algorithm 2 starts
from a desirable initial solution x(0) by Algorithm 1, it likely returns
a near global optimal result.

5 EXPERIMENTAL RESULTS
Our proposed algorithms are implemented in C++ and run on a
personal computer with 2.7GHz CPU, 8GB memory and Unix op-
erating system. We test our method on MCNC benchmarks and
an industry Faraday benchmarks, provided by Fang et al. [15]. As
in [18], layouts of all benchmarks are transformed to grid models,
where a grid size is one metal pitch. In the experiments, the distance
between a via and its redundant via is set to one metal pitch, and
the optical resolution limit spacing ds of adjacent guiding templates
is set to one metal pitch too. The user-defined parameter β is set to
1.

To evaluate the performance of the proposed local optimal algo-
rithm in Section 4.2, we compare the obtained results with the ILP
results in TCAD’17 [15] and ASPDAC’17 [19]. The experimental
comparisons are reported in Table 1. Columns “TCAD’17 [15]” and
“ASPDAC’17 [19]” are the results in [15] and [19], respectively. col-
umn “Extended TVLSI’18 [17]” is obtained by extending the method
in [17] to consider dummy via insertion. The results in “Ours” are
obtained by solving Algorithm 2 in Section 4.2. Moreover, in this
table, column “#V” lists the numbers of vias, and column “CPU(s)”
is the runtime in second. “MR(%)” and “IR(%)” are, respectively, the
manufacture rate and the redundant via insertion rate.

MR = #MV
#V × 100%, IR = #RV

#V × 100%.

In the above equations, #MV is the number of manufacturable vias
(excluding redundant vias), #RV is the number of inserted redundant
vias.

The difference between the results in “Our” and in “TCAD’17
[15]” is that our work considers dummy via insertion but TCAD’17
does not. As shown from row “Ratio”, the proposed Algorithm
2 improves MR and IR up to 6% and 7%, respectively. These im-
provements mainly result from the help of dummy via insertion.
Naturally, considering dummy via insertion will extremely increase
the size of solution space, which leads to more challenge for solving.
In spite of this, our Algorithm 2 achieves 3.99× less runtime than
the ILP in TCAD’17 [15].

Both of the methods in ASPDAC’17 [19] and our Algorithm
2 consider dummy via insertion as a complementary technique
for improving MR and IR. From the comparison in TABLE 1, our
Algorithm 2 achieves almost the same results as the ILP in [19].
This shows our proposed local optimal algorithm can achieve near-
optimal result. It must be noted that, the average runtime of the ILP
in [19] is 13.32× slower than our Algorithm 2. The improvement in
runtime owes to our compact solution expression, which greatly
reduces the solution space.

Compared with the results in column “Extended TVLSI’18 [17]”,
“Ours” improves MR and IR up to 3% and 2%, respectively. These
comparisons show that our fast algorithm is very effective and
efficient.



Table 1: Comparison of Four Methods for RDD Problem.

Benchmarks #V TCAD’17 [15] ASPDAC’17 [19] Extended TVLSI’18 [17] Ours
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)

struct 12551 99.86 99.42 30.00 99.96 99.79 40.47 99.80 99.43 11.42 99.95 99.69 10.78
primary1 8764 99.80 99.21 28.00 99.92 99.33 29.14 99.79 99.42 11.97 99.80 99.45 12.75
primary2 32684 99.54 98.97 72.00 99.92 99.49 111.22 99.67 98.73 36.02 99.70 99.11 37.15
s5378 8649 81.10 61.78 11.00 96.41 75.27 34.41 90.32 71.89 0.58 95.42 75.09 0.55
s9234 6874 80.07 59.54 9.00 96.21 74.51 38.63 89.80 71.93 0.49 94.66 75.12 0.50
s13207 18780 84.35 66.93 23.00 97.13 79.28 99.96 91.27 75.57 2.27 96.19 79.01 1.85
s15850 22694 82.70 64.41 28.00 96.63 77.35 121.94 90.75 74.36 2.94 95.61 77.58 2.73
s38417 54225 84.00 65.71 65.00 96.83 78.13 320.35 91.01 75.58 15.27 95.92 78.59 13.06
s38584 74155 81.53 63.01 88.00 96.37 76.83 416.11 90.12 73.87 30.32 95.18 77.12 24.38
dma 34697 97.85 95.29 55.00 99.61 97.49 208.75 98.81 96.63 6.65 99.06 97.22 6.44
dsp1 30317 99.05 97.57 53.00 99.74 98.45 176.42 99.33 97.93 10.77 99.45 98.25 10.52
dsp2 31301 98.50 96.68 52.00 99.76 98.74 179.37 99.16 97.79 8.96 99.35 98.16 8.55
risc1 43858 98.77 96.93 75.00 99.70 98.04 216.61 99.20 97.54 18.80 99.34 97.90 18.92
risc2 44385 98.79 96.91 77.00 99.70 97.98 229.22 99.18 97.47 18.46 99.32 97.89 18.69
Avg. 30281 91.85 83.03 47.57 98.42 89.33 158.76 95.59 87.72 12.49 97.78 89.30 11.92
Ratio 0.94 0.93 3.99 1.00 1.00 13.32 0.97 0.98 1.04 1.00 1.00 1.00

6 CONCLUSION
In this paper, we have concurrently considered dummy via insertion
and redundant via insertion for DSA guiding template assignment
problem. Thanks to building-blocks, the vertices number in conflict
graph can be effectively reduced. On the conflict graph, we model
the problem as an ILP formulation, and relax it to an unconstrained
nonlinear programming. We develop a line search optimization
algorithm to obtain a local optimal solution. Since the algorithm
is highly dependent on the initial solution, we further design an
efficient initial solution generation instead of random guess. Ex-
perimental results demonstrate the effectiveness of our solution
expression and the proposed algorithm.
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