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ABSTRACT
1D gridded design is one of the most promising solutions that
can enable the scaling to 10nm technology node and beyond.
Line-end cuts are needed to fabricate 1D layouts, where two
techniques are available to resolve the conflicts between cuts:
cut redistribution and cut mask assignment. In this paper,
we consider incorporating the two techniques to enable the
manufacturing of cut patterns in 1D gridded design. We first
present an accurate integer linear programming (ILP) formu-
lation that can solve the co-optimization of cut redistribu-
tion and mask assignment optimally. In addition, we pro-
pose an efficient graph-theoretic approach based on a novel
integrated graph model and a longest-path-based refinement
algorithm. Experimental results demonstrate that our graph-
theoretic approach is orders of magnitude faster than the ILP-
based method and meanwhile can obtain very comparable
results. Comparing with the method that solves mask as-
signment and cut redistribution optimally but separately, our
graph-theoretic approach that solves the two tasks simultane-
ously can achieve 95.0× smaller cost and 84.8× speedup on
average.

1. INTRODUCTION
With the continuous scaling of transistor feature size, one

dimensional (1D) gridded design (also known as unidirectional
design) is widely believed to be a promising manufacturing so-
lution for 10nm technology node and beyond [1–3]. The major
advantages of 1D layouts over conventional two dimensional
(2D) ones are lower design complexity and higher yield.

To fabricate a 1D layout, first some dense lines will be
printed, and then cut masks will be used to trim off the un-
wanted parts. For example, given a target layout in Fig. 1(a),
the 1D dense lines are first printed as shown in Fig. 1(b).
Then some rectangular cuts, usually referred as line-end cuts,
are applied to generate wires obeying the target layout (see
Fig. 1(c)). The wires other than the target layout will have
no electronic functionality and are called dummy wires. The
real wires in Fig. 1(a) are located on different tracks and a
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Figure 1: (a) A 1D target layout. (b) Dense lines. (c) Cuts
and dummy wires. (d) The cuts are redistributed. (e) The
cuts are assigned to different masks. (f) Incorporating cut
redistribution with cut mask assignment.

space between two real wires on the same track is called a
gap. Thanks to the uniformity, the dense lines are easy to
print through a variety of lithography techniques, e.g., self-
aligned double patterning (SADP). However, the manufactur-
ing of cut patterns are very challenging, as two cuts that are
too close to each other will result in a conflict or an error in
manufacturing. For example, in Fig. 1(c), cut a conflicts with
cut b while cut c conflicts with cut d.

To resolve the conflicts among cuts, two techniques are
widely exploited: cut redistribution [4, 5] and mask assign-
ment [6]. On one hand, an example of cut redistribution is
illustrated in Fig. 1(d), where a conflict between two cuts can
be resolved by either merging them together (e.g., cuts a and
b) or locating them far away enough (e.g., cuts c and d). Note
that through cut redistribution the wires will be extended,
thus the timing may be affected. To limit such side effects
along with wire extension, some additional constraints would
be introduced, e.g., the wires on timing-critical nets are less
flexible to be extended. On the other hand, through mask
assignment, two conflicting cuts can be assigned to different
masks as in multiple patterning lithography (MPL) [7], and
manufactured by separate litho-etch processes (see Fig. 1(e)).
Since relying solely on either approach may result in a large
number of unresolved conflicts, in this paper we propose to
incorporate cut redistribution with cut mask assignment to
enable 1D grided design. Besides, we assume two cut masks
are available, i.e., the mask assignment process is similar to
the 2-coloring problem. An example of incorporating cut re-
distribution with mask assignment is shown in Fig. 1(f).

Even with cut redistribution and two cut masks, there may
still be conflicts that cannot be resolved, especially in the pres-
ence of native conflict, i.e., a conflict that cannot be resolved
by any cut redistribution nor 2-coloring. There are two ways
to handle the unresolved conflicts. The first way is to minimize
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and report the unresolved conflicts to designers for further
layout modification [7]. The second way is to use complemen-
tary e-beam cuts [2], i.e., some of the cuts with unresolved
conflicts will be manufactured by e-beam lithography [4, 5].
Due to the high resolution of e-beam lithography, we can as-
sume that an e-beam cut will not conflict with any other cut,
but the number of e-beam cuts should be minimized to im-
prove throughput. In this paper, we assume the second way
to handle unresolved conflicts.

There have been works studying the problem of cut redistri-
bution for 1D design [4,5], where the problems are formulated
as integer linear programming (ILP). (Note that in [5] an-
other type of cut mask that directly removes the whole gap
between wires is considered, but it will greatly increase the
mask complexity.) There have also been works trying to re-
distribute the cuts to match with directed self-assembly (DSA)
templates [8–10] or trying to incorporate MPL with DSA [11].
A recent work [12] also proposes ILP-based method to co-
optimize cut mask, dummy fill and timing. However, as ana-
lyzed in Section 3, all these ILP formulations have some limi-
tations.

In this paper, we study the problem of co-optimization of
cut redistribution and mask assignment for 1D gridded design
such that (i) no violation in design rules occurs; (ii) the num-
ber of e-beam cuts are minimized and (iii) the total wire exten-
sions are minimized. We first present an accurate and optimal
ILP formulation that overcomes the limitations of previous
works. In addition, we propose a graph-theoretical approach
based on a novel integrated graph model and a longest-path-
based refinement algorithm to solve the problem efficiently
and effectively.

The rest of the paper is organized as follows. Section 2
introduces some preliminaries and the problem formulation.
Section 3 presents our accurate ILP formulation. Section 4
describes our graph-theoretic approach that can solve the co-
optimization problem efficiently. Section 5 reports experimen-
tal results and Section 6 concludes the paper.

2. PROBLEM FORMULATION
The input to our problem is a set of n wires {w1, ...wn} and

2n cuts {c1, ...c2n}. Variable ei indicates whether ci is printed
using e-beam, where 1 ≤ i ≤ 2n. If ci is an e-beam cut, ei = 1;
otherwise, ei = 0. The wires are labeled by 1 to n from the
bottom to the top and from the left to the right in the layout.
The tracks are labeled by 1 to the total number of tracks from
the bottom to the top. We use L(wi)/R(wi) to represent the
left/right end of wi. The cuts c2i−1 and c2i are located at the
two ends of wi, i.e., L(wi) and R(wi), respectively. The width
of a rectangular cut is W . li/ri and x2i−1/x2i are used to
represent the x-coordinates of L(wi)/R(wi) in the input and
the output, respectively. Note that in gridded design, these
coordinates are discrete. Variable yi is the label of the track
on which wi is located.

In this paper, we assume the following 1D gridded design
rules as in previous works [5, 12]:

• Rule 1: There is an array D = {d(0), d(1), . . . , d(H)} that
defines the horizontal critical distances (i.e., safe distances)
between cuts. d(0) is the critical distance between two cuts
located on the same track, and d(1) is the critical distance
between two cuts located on adjacent tracks (i.e. the dif-
ference between the labels of their tracks is 1), etc. The
x-coordinate of a cut is the x-coordinate of its lower-left
corner and the horizontal distance between two cuts is the
difference between their x-coordinates. H is the largest dif-
ference between the track labels of two conflicting cuts. Note
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Figure 2: Different types of merging. (a) Merging on the
same track. a is merged with b. c is merged with d. (b)
Cuts a and b on adjacent tracks are merged. (c) Cuts a and
c on non-adjacent tracks are merged. In such case, a, b and c
should be vertically aligned.

that such modeling of critical distance is general enough to
handle critical distance measured in Euclidean distance.

• Rule 2: The wires can be extended but not shortened, i.e.,
x2i−1 ≤ li and x2i ≥ ri. The total extension of a wire
cannot exceed a limit for this wire, denoted as δi, i.e., (x2i−
x2i−1) − (ri − li) ≤ δi. Besides, the wires after extensions
cannot exceed the boundaries of the layout.

• Rule 3: Two cuts assigned to the same mask are in con-
flict if (i) neither of them is an e-beam cut; (ii) they are
within critical distance and (iii) they are not merged. Such
a conflict is disallowed.

• Rule 4: Only the cuts on the same mask can be merged.
There are three types of merging. The first type, as shown in
Fig. 2(a), is that two cuts on the same track can be merged
if they abut (e.g., cuts a and b in the figure) or overlap
with each other (e.g., cuts c and d). The second type is
that two cuts on adjacent tracks can be merged if they are
aligned vertically (Fig. 2(b)). The third type is that two cuts
on non-adjacent tracks can be merged if they are aligned
vertically and they are both merged with the cuts located
on the tracks in between. As a result, all these merged cuts
should be vertically aligned (Fig. 2(c)).

We formally define the problem for co-optimization of cut
redistribution and mask assignment as follows.

Problem 1. Given a set of design rules and a layout of n
wires and 2n cuts, decide the manufacturing method (using e-
beam or not), the mask and the location of each cut, such that
all the design rules are satisfied. The objective is to minimize

n∑
i=1

[(x2i − x2i−1)− (ri − li)] + α

2n∑
i=1

ei, (1)

where α is a variable to represent the relative importance be-
tween e-beam cuts and wire extensions (α is typically a large
number).

3. AN ACCURATE ILP FORMULATION
There have been works [4, 5] solving the problem of single-

mask cut redistribution for 1D design using ILP. As the ILP
formulation in [5] can be solved much faster than that in [4],
we will extend the formulation in [5] to simultaneously per-
form cut redistribution and mask assignment. Although the
ILP formulation in [12] can also perform simultaneous cut re-
distribution and mask assignment, its limitations will be ana-
lyzed in Section 3.2.

3.1 Extensions for General Cut Redistribution
We first give some introductions to the ILP in [5]. Two

gaps are called overlapping gaps if they overlap in horizontal
direction. The objective of the ILP is to minimize Eq. (1).
There are five sets of constraints: C1. constraints for line end
extensions (Rule 2); C2. constraints for gaps between wires;
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Figure 3: (a) Illustration for the constraint between non-
overlapping gaps. (b) Illustration for the constraint between
overlapping gaps on non-adjacent tracks.

C3. constraints for non-overlapping gaps; C4. constraints for
overlapping gaps on adjacent tracks and C5. constraints for
overlapping gaps on non-adjacent tracks.

The ILP in [5] can be written as

ILP1 : min. Eq. (1) (2)

s.t. C1 ∼ C5 (2a)

However, the ILP in [5] has some limitations when handling
C3 and C5, which will be analyzed in Appendix A. Note that
these limitations exist for both single-mask and multiple-mask
scenarios. In the following, we will extend the ILP in [5] to
overcome these limitations and handle C3 and C5 correctly.

3.1.1 The constraints for C3
As shown in Fig. 3(a), there are two non-overlapping gaps

denoted as gapi and gapj , where gapi is between the wires
wi and wi+1 and gapj is between the wires wj and wj+1.
W.l.o.g., we can assume gapi is on the right of gapj . We have
the following constraints for C3.

x2i − (x2j+1 −W ) + I(e2i + e2j+1) ≥ d(|yi − yj |), (3)

x2i − x2j + I(e2i + e2j) ≥ d(|yi − yj |), (4)

(x2i+1 −W )− x2j + I(e2i+1 + e2j) ≥ d(|yi − yj |), (5)

x2i+1 − x2j+1 + I(e2i+1 + e2j+1) ≥ d(|yi − yj |). (6)

In the above equations, I means infinity. Regarding gapi
and gapj , there are four pairs of possible conflicts between
the ends of the wires and we need four equations: the con-
flict between R(wj) and L(wi+1) is considered by Eq. (3),
the conflict between L(wj+1) and L(wi+1) is considered by
Eq. (4), the conflict between L(wj+1) and R(wi) is considered
by Eq. (5), and the conflict between R(wj) and R(wi) is con-
sidered by Eq. (6). In Eq. (3), x2j+1 is the x-coordinate of
L(wj), and x2i and (x2j+1 −W ) are the x-coordinates of c2i
and c2j+1, respectively. If either of c2i and c2j+1 is printed
using e-beam, the constraint can be satisfied. Otherwise, the
distance between R(wi) and L(wj+1) must be larger than or
equal to the corresponding critical distance. Eqs. (4)∼(6) are
similar.

3.1.2 The constraints for C5
As shown in Fig. 3(b), the gap between wi and wi+1 and the

gap between wj and wj+1 are two overlapping gaps. Again,
there are four pairs of line ends that need to be considered
regarding the constraint between the two gaps. For simplicity,
we only describe the constraint between R(wi) and R(wj) as
the others are similar. W.l.o.g., we assume yi − yj = 2. We
have the following constraints for C5.

x2i − x2j + I(e2i + e2j + d2i2j +m2i
2j) ≥ d(|yi − yj |), (7)

x2j − x2i + I(e2i + e2j + 1− d2i2j +m2i
2j) ≥ d(|yi − yj |), (8)

x2i − x2j + I(1−m2i
2j) ≥ 0, (9)

x2i − x2j − I(1−m2i
2j) ≤ 0, (10)

m2i
2j ≤ m2i

2k +m2i
2k+1 +m2i

2k+2 +m2i
2k+3. (11)

In the above equations, d2i2j and m2i
2j are two binary vari-

ables. If c2i is merged with c2j , m
2i
2j = 1; otherwise, m2i

2j = 0.
It can be seen that if either c2i or c2j is printed using e-beam
or the two cuts are merged, the constraints can be satisfied.
Otherwise, either Eq. (7) or Eq. (8) will be activated depend-
ing on the value of d2i2j to ensure that the distance between c2i
and c2j is at least the corresponding critical distance.

If the two cuts are merged, they must be vertically aligned.
Eqs. (9) and (10) are used to enforce this.

Besides, as required in Rule 4, c2i and c2j can be merged
only if they are both merged with a cut cv located on the
track between the tracks of c2i and c2j . In our example, there
are four choices for cv, namely c2k, c2k+1, c2k+2 and c2k+3.
Eq. (11) is used to make sure that c2i and c2j are merged
with at least one of the four cuts.

Furthermore, to make sure that two cuts are merged only
when neither of them is an e-beam cut, we add

1− eu ≥ mv
u & 1− ev ≥ mv

u (12)

for each variable mv
u appeared in Eq. (11).

3.2 Extensions to Handle Simultaneous Cut Re-
distribution and Mask Assignment

To handle simultaneous cut redistribution and mask assign-
ment, we add a binary variable si for each cut ci to indicate
the mask for ci, and a binary variable f j

i to indicate whether

ci is with a different color from cj , where f j
i = si⊕sj (this can

be linearized easily). To make sure that two cuts are merged
only when they are in the same mask, we add

1− f j
i ≥ m

j
i (13)

for each variable mj
i .

There is no conflict between two cuts in different masks.
Thus we modify Eq. (3) as follows:

x2i− (x2j+1−W )+I(e2i +e2j+1 +f2i
2j+1) ≥ d(|yi−yj |), (14)

and similarly for other constraints.
Although the ILP formulation in [12] can also perform si-

multaneous cut redistribution and mask assignment, our ILP
formulation has the following major advantages. First, the
formulation in [12] does not differentiate overlapping gaps
and non-overlapping gaps and thus may introduce some un-
necessary variables and constraints, e.g., two cuts in non-
overlapping gaps can never be merged but the formulation
in [12] may also try to merge them. Second, the formulation
in [12] only minimizes extensions. However, without incorpo-
rating the variables for unresolved conflicts or complementary
e-beam cuts, an ILP may not have a solution. Third, the for-
mulation in [12] does not have limits on the extensions of wires.
Fourth, the formulation in [12] does not force the merged cuts
to be in the same mask, thus, as shown Fig. 3(b), it may in-
correctly align and merge c2i, c2k and c2j even if c2i and c2j
are in mask 1 while c2k is in mask 2. Finally, the formula-
tion in [12] also has the same problem for constraint C5 as
in [5], which will be discussed in Appendix A. By overcoming
these limitations, the ILP in [12] can also be extended to our
accurate ILP.

4. GRAPH-THEORETIC APPROACH
Although the accurate ILP formulation can solve Problem 1

optimally, the solving process is very time-consuming. As re-



c2i c2i+1

c2j c2j+1

wi wi+1

wj wj+1

c2i+2

 mr2i / mr2i+1  mr2i+2

 mr2j  mr2j+1

(a)

c2j
c2j+1

c2i c2i+1 c2i+2

(b)

c2j

c2j+1

c2i c2i+1 c2i+2

moving range

(c)

Figure 4: (a) The input layout and cuts. (b) The conflict
graph G. (c) The potential conflict graph Gp.

ported in [5], the ILP formulation only performing cut redistri-
bution takes about 13000 seconds to solve an M1 layout with
8000 tracks. After extending the formulation to Problem 1,
the ILP solver must decide the mask for each cut. Thus, the
running time grows exponentially with the number of cuts and
may be much longer than that in [5]. In view of this, in this
section we propose a novel graph-theoretic approach that can
give a very comparable solution in a short time.

4.1 Potential Conflict Graph & Conflict Graph
Given a layout of wires and cuts, we can build a conflict

graph G (throughout the paper, we use G to represent a con-
flict graph or a subgraph of a conflict graph), in which a node
represents a cut and an edge between two nodes represents
a conflict between the two corresponding cuts. For example,
Fig. 4(b) shows the conflict graph for the cuts in Fig. 4(a).
However, with cut redistribution, G is not static, meaning
that the conflicts between the cuts can change dynamically.
In view of this, we will build another potential conflict graph
Gp before building G. Gp is similar to G, except that there is
an edge between two nodes in Gp iff there is a potential conflict
between the two corresponding cuts with cut redistribution.
To construct Gp, we first find the possible moving range mri
of each cut ci. As shown in Fig. 4(a), the moving range (of
the lower left corner) of c2i is computed as follows. According
to Rule 2, we have ri + δi ≥ x2i ≥ ri and x2i ≤ li+1 −W .
For c2i+2, we have an additional constraint that x2i+2 ≤ Br,
where Br is the x-coordinate of the right boundary of the
given layout. The moving ranges of the other cuts can be
calculated similarly. For any k and l, there is a potential con-
flict between ck and cl if ck may conflict with cl when they
move within their moving ranges. For instance, the potential
conflict graph for the cuts in Fig. 4(a) is shown in Fig. 4(c).

With Gp, we can safely split the graph into independent
components and process those components separately. We
can also find bridges and articulation nodes in the graph to
further simplify it. Details of the graph simplification methods
can be found in [13]. Applying these simplification methods
on Gp is guaranteed to be safe because Gp will never change.
For the same reason, we only need to build Gp once.

4.2 Overview
We use the graph simplification methods to split Gp into

subgraphs, and then we will process the layouts corresponding
to these subgraphs separately without losing any optimality.
For each layout, we build a conflict graph G, and in the fol-
lowing, we mainly work on each conflict graph G. Our first
task is to try to relocate the cuts to make G 2-colorable. As
a result, e-beam cuts can be totally saved for this layout. If
G cannot be made 2-colorable by relocating the cuts, our sec-
ond task is to select some of the cuts to be printed by e-beam
lithography such that the remaining subgraph is 2-colorable.

At first glance, our first task is similar to the problem of
layout legalization for double patterning, i.e., modifying the
layout to make the features 2-colorable. There have been some
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Figure 5: The flow of our graph-theoretic approach.

previous works [14–16] on this problem. In [14], a wire pertur-
bation method is called iteratively as long as the odd cycles
in the conflict graph are reduced. In [15], the conflict graph is
first colored heuristically and then an LP is used to decide the
locations of the features such that two features with the same
color are far away enough. These methods are not applicable
to our problem because of the unfixed horizontal order, the
high density of the cuts, as well as the high complexity of the
conflict graph in our problem. In [16], an ILP is used to decide
the colors and locations of the features simultaneously, which
will be very time-consuming. Besides, in the layout legaliza-
tion problem, the features can only be spaced to resolve the
conflicts, but in our problem the cuts can be merged. Fur-
thermore, the existing approaches are for general 2D layouts
and do not make use of the features of 1D design.

Our approach is an iterative method, whose flow can be
found in Fig. 5. In each iteration, we will construct the con-
flict graphG, and split it into subgraphs (components) by find-
ing independent components, bridges and articulation nodes.
However, different from Gp, G is not static, and thus at the
beginning of each iteration, we will repeat the conflict graph
construction and splitting process. If every component is 2-
colorable (which can be tested through depth-first search), we
can combine these components, post-process and output the
solution. Otherwise, for each non-2-colorable component, we
try to select some moves to relocate the cuts so as to resolve
some of the conflicts in that component. The definition of
moves will be given later. If there are any selected moves, all of
them will be performed. Otherwise, we will select some of the
cuts to be printed using e-beam. After performing moves or
selecting e-beam cuts for all the uncolorable components, we
move on to the next iteration. The key steps of our approach,
i.e., move selection, e-beam cut selection and post-processing,
will be elaborated below.

4.3 Move Selection
We define the meaning of a “move” as follows. A move in-

volves one or two cuts, and the moving directions and moving
distances of these cuts. Formally, a move is {(ci,±di)} or
{(ci,±di), (cj ,±dj)}, where ci ad cj are cuts, and di and dj
are discrete distances. We use “+” to represent moving right-
wards and “−” to represent moving leftwards. The basic cost
of a move is the total extensions it will cause. For example,
given the cuts in Fig. 6(a) and the conflict graph in Fig. 6(b),
we generate three moves as shown in Fig. 6(c), and the cost
of each move is 1. At each iteration, we only allow moves
to shift cuts away from their original positions to avoid mov-
ing a cut back and forth. In post-processing, a cut can be
moved towards its original position to compensate for the loss



of quality.

4.3.1 Move Generation
Given a conflict edge in G, we will generate a set of moves

that can resolve this conflict, under the limit on extensions.
Basically, there are two types of moves that can resolve con-
flicts. The first type is to align two conflicting cuts or make one
abut/overlap with another (so that they can be merged) and
the second type is to space two conflicting cuts, e.g., among
the moves in Fig. 6(c), m2 can align b and c and m1 can
space a and b. After we generate the moves for each conflict
edge separately, there may be duplicated moves because one
move may solve the conflicts corresponding to multiple con-
flict edges at the same time, e.g., m1 can solve the conflicts
for edges (a, b) and (a, c) at the same time. Thus, after gener-
ating all the moves, we will detect and remove the duplicated
ones.

Note that a move that tries to resolve one conflict may cause
another new conflict, e.g., m1 in Fig. 6(c) will cause a new con-
flict between a and e. If we simply forbid such moves, the cut
redistribution process may get stuck because such moves may
be the only possible moves for some conflicts and the newly
caused conflict may be resolved by 2-coloring or moving other
cuts further. Thus, our strategy is to allow such moves but
increase their costs by β (which is set to 1 in our experiments)
for each newly caused conflict to give preference to the moves
that cause fewer new conflicts. If there are new conflicts, they
will be solved in the next iteration.

4.3.2 Integrated Graph Model
In this section, we will introduce how to select moves based

on an integrated graph model.
With the generated moves in the previous section, we will

first build a move constraint graph, in which a node rep-
resents a move and an edge between two nodes means that
the two corresponding moves are incompatible. Two moves
are incompatible if (i) after applying both moves, the total
extension of a wire will exceed the limit; or (ii) the two moves
shift a cut in different ways; or (iii) applying both moves can-
not resolve the conflicts that we intend to solve. For example,
m2 and m3 in Fig. 6(c) are incompatible regarding the conflict
between b and c because applying both of them cannot resolve
the conflict. The move constraint graph for m1, m2 and m3

is shown in Fig. 6(d).
Given a set Cf of conflict edges and a set M of moves, we

will build a bipartite graph B1 between Cf and M as shown
in Fig. 6(e). Each edge between a conflict and a move in B1

means that the move can resolve the conflict.
A graph is 2-colorable iff it has no odd cycle. Thus, we need

to select a set of edges from G to be resolved by the moves such
that there is no odd cycle in the remaining subgraph. How-
ever, the problem of removing the minimum number of edges
from a graph to break all the odd cycles is NP-Complete in
general [17]. Enumerating all the odd cycles will also be time-
consuming because the number of odd cycles grows exponen-
tially with the number of nodes even in planar graphs [18].
Thus, in each iteration, we only resolve the odd cycles in a
cycle basis of G. A cycle basis of a graph is a minimal set of
cycles that can be combined to form every cycle in the graph
using a sequence of symmetric differences1 [14, 19].

A simple cycle basis of a connected graph G can be found as
follows. Let T be a spanning tree of G, then each edge ε /∈ T

1The symmetric difference of two cycles is the set of edges which
appear in either of the two cycles but do not appear in both of
them.
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Figure 6: Illustration for move selection. Dash lines is in-
compatible edge between moves. cl0 is the cycle of a, b and
c. (a) Cuts. (b) Conflict graph G, and the odd cycle in its
cycle basis is highlighted. (c) Moves. (d) Move constraint
graph. (e) Bipartite graph B1 between Cf andM. (f) Bi-
partite graph B2 between Cl and Cf . (g) The integrated
graph model.

combined with the path in T that connects the endpoints of ε
forms a cycle in the cycle basis [19]. For instance, considering
the graph G in Fig. 6(b), for the connected subgraph (without
the isolated node e), a spanning tree T = {(c, a), (b, c), (c, d)},
and the only edge not in T is (a, b). Thus there is only one
cycle cl0 = {(c, a), (a, b), (b, c)} in the cycle basis of G.

It is easy to see that if there is no odd cycle in the cycle
basis of G, then G has no odd cycles and is thus 2-colorable.
On the other hand, if there is any odd cycle in the cycle basis
of G, G is not 2-colorable. Therefore, in each iteration, we try
to break the odd cycles in the cycle basis of G, which would
be a good way to break all the odd cycles iteratively 2. Our
problem can be modeled as a bipartite graph B2 between
the odd cycles in a cycle basis (denoted as Cl) and the conflict
edges Cf in these odd cycles. An example is shown in Fig. 6(f),
where an edge between a cycle and a conflict edge means that
resolving the conflict can break the odd cycle.

We then combine the graph models in Fig. 6(d)–6(f) to-
gether to get an integrated graph GI as shown in Fig. 6(g).
In Fig. 6(g), the incompitable edge between moves is the same
as that in Fig. 6(d). There is an edge in GI between cl ∈ Cl
and m ∈ M, iff ∃cf ∈ Cf such that an edge exists between
cl and cf in B2 and an edge exists between cf and m in B1.
The problem of move selection based on the integrated graph
model can be formulated as follows.

Problem 2. Given a graphGI(Cl,M), select a minimum weight
subset Ms of the nodes in M, subject to the constraints be-
tween the nodes inM, such that every node in Cl is connected
to at least one node in Ms.

It can be seen that this problem is equivalent to the con-
strained set cover problem (CSCP)3, which will be solved in
the next section.

4.3.3 Solving the Constrained Set Cover Problem
The set cover problem, even without constraints, is NP-

hard. To get high quality result, we formulate CSCP as an ILP
and use an ILP solver to solve it optimally. The formulation

2Notice that breaking all the odd cycles in a cycle basis of a graph
may not break all the odd cycles of the graph, because the graph
may have a different cycle basis after removing some edges. In our
approach, the unresolved odd cycles in one iteration will be resolved
in later iterations.
3In CSCP, Cl is the “universe” and M is the collection of “sets”.
The constraints are among the sets.



a

b

merging
conflict

(a)

b
c

a

(b)

c1

ci

cn

...
...

c2

(c)

c1

c2

c3

c4

c5

c1
c2
c3

c4
c5

c1
c2
c3

c4
c5

(d)

Figure 7: Vertically aligned Cuts.

is as follows:

ILP2 : min.

|M|∑
j=1

bj · cost(mj), (15)

s.t.

|M|∑
j=1

aij · bj ≥ 1, ∀i ∈ {1, . . . , |Cl|}, (15a)

bi + bj ≤ 1, ∀ci incompatible with cj , (15b)

where aij is a binary number and bj is a binary variable. aij =
1 iff there is an edge between cli and mj in GI . bj = 1 iff mj

is selected.
By solving ILP2, some moves will be selected. Note that
ILP2 can be solved much more efficiently than the ILP in
Section 3 (ILP1). There are three major reasons. First, we
solve the problem iteratively as shown in Fig. 5 and in each
iteration we split the conflict graph into smaller components,
while such acceleration techniques cannot be applied to ILP1.
Second, the numbers of constraints are O(P ) and O(|Cl|) in
ILP1 and ILP2, respectively, where P is the total number
of pairs of gaps that may have conflicts. Generally speaking,
|Cl| << P . Third, the solution space of ILP1 is very large
because there are many different positions to place the cuts,
while in ILP2, a move can only be either selected or not, and
the solution space is thus much smaller. The efficiency of our
approach can be seen clearly from the experimental results in
Section 5.

4.3.4 Handling Vertically Aligned Cuts
In this section, we discuss how to handle vertically aligned

cuts specially when constructing the conflict graph.
For two vertically aligned cuts on adjacent tracks, such as a

and b in Fig. 7(a), we will not add an edge between them when
constructing the conflict graph. This is because, if a and b are
finally colored differently, there is no conflict between them.
On the other hand, if they are colored the same, they can
always be merged and there is still no conflict.

If H ≥ 2, for three or more consecutive and vertically
aligned cuts, such as a, b and c in Fig. 7(b), the situation
is more complicated. If a and c are colored the same, then b
must be colored the same with a and c, as otherwise a and c
cannot be merged and a conflict between them occurs. On the
other hand, if a and c are colored differently, then the color of
b will be the same as one of them. If we add an edge between
a and c, it will force the solver to space them or to color them
differently, which may result in sub-optimality. Actually, from
the above analyses we can see that there is no need to add an
edge between a and c as long as we can make sure that b is
colored the same as at least one of a and c.

In general, consider n consecutive and vertically aligned cuts
{c1, ...cn} where 3 ≤ n ≤ H+1, as shown in Fig. 7(c). (There
is no need to consider n > H + 1 as there will be no conflict
between c1 and cn.) We have the following lemma , whose
proof is shown in Appendix B.
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Figure 8: Illustration for the longest-path-based extension
reduction method. (a) A cut redistribution and coloring solu-
tion, where the x-coordinates for a, b, c and d are 4, 1, 1 and
4, respectively. (b) The left-compaction graph and the longest
paths. (c) The cut distribution after left-compaction.

Lemma 1. There is no conflict among c1, ...cn iff the follow-
ing condition is satisfied: ∃i where 2 ≤ i ≤ n such that
c1, ...ci−1 are colored the same and ci, ...cn are colored the
same.

According to Lemma 1, to make sure that some of the
cuts are colored the same to avoid conflicts, we merge some
of the nodes into one node when constructing the conflict
graph. Consider constructing the conflict graph for m ver-
tically aligned cuts. If 2 < m ≤ 2H, we will merge the nodes
corresponding to the bottom dm

2
e cuts, and the nodes corre-

sponding to the upper m−dm
2
e cuts; if m > 2H, we will merge

the nodes in groups of H. This will make sure that among the
m cuts, for any n consecutive cuts, where 3 ≤ n ≤ H + 1, the
condition in Lemma 1 is satisfied. An example of m = 5 and
H = 2 is shown in Fig. 7(d), and the merging will make sure
that for any n consecutive cuts, where 3 ≤ n ≤ H + 1, the
condition in Lemma 1 is satisfied and there is no conflict.

Note that there are many different ways to merge the nodes.
Experimental results show that our merging strategy is effec-
tive to resolve the conflicts among vertically aligned cuts.

4.4 E-beam Cut Selection
For some of the components, there may not be available

moves to make them 2-colorable, especially when there is na-
tive conflict. In this case, we will select some of the cuts to
be printed using e-beam lithography. This operation is equiv-
alent to deleting some nodes from the conflict graph G. We
want to delete a minimum set of nodes from G such that at
least one node is deleted from each odd cycle in a cycle basis
of G. The problem is again formulated as a set cover problem
and an ILP. The formulation is similar to Eq. (15) but without
the incompatible constraints.

4.5 Post-processing
In this section, we present two post-processing methods to

reduce the extensions of the wires.

4.5.1 Longest-path-based Global Extension Reduction
The first method to reduce wire extensions is a longest-path-

based method. Given a solution of the locations and masks
of the cuts, inspired by compaction in floorplanning [20], we
want to compact the cuts at the right (left) ends of the wires
to the left (right) as much as possible, subject to the spacing
constraints between the cuts in the same mask, so as to reduce
the total extensions.

For example, as shown in Fig. 8(a), where we only consider
the cuts in mask 1, we construct a left-compaction graph as
follows (see Fig. 8(b), where we assume that cuts on non-
adjacent tracks have no conflicts). There is a node i for each
cut ci and a dummy source node s. There is a directed edge
from s to each node i. If ci is merged with some other cuts or
ci is at the left end of some wire, the cost of the edge between



Table 1: Result Comparisons

data Single Mask [5]* ILP Extended from [5,12] optCR(opt. coloring+opt. redistribution) Our Graph-theoretic Method
track# eb# ext cost eb# ext cost time eb# ext cost time eb# ext cost time

50 14 53 14053 0 26 26 18.0 4 29 4029 0.7 0 26 26 0.1
100 24 106 24106 0 46 46 180.4 9 50 9050 1.2 0 46 46 0.2
150 36 236 36236 0 78 78 6446.9 14 91 14091 2.4 0 79 79 0.4
200 48 244 48244 OM OM OM >36000 17 109 17109 2.8 0 104 104 0.5
250 59 324 59324 OM OM OM >36000 19 135 19135 3.4 0 129 129 0.6
300 69 403 69403 OM OM OM >36000 23 174 23174 4.7 0 164 164 0.7
1000 266 1560 267560 OM OM OM >36000 69 670 69670 35.6 0 583 583 2.2
2000 515 3123 518123 OM OM OM >36000 131 1380 132380 91.4 0 1230 1230 4.5
4000 1026 6447 1032447 OM OM OM >36000 278 2764 280764 245.3 1 2500 3500 9.4
8000 2157 12924 2169924 OM OM OM >36000 568 5740 573740 2784.9 1 5178 6178 18.8
Avg. 421.4 2542 423942 - - - - 113.2 1114.2 114314.2 317.2 0.2 1003.9 1203.9 3.7
Ratio 2107.0 2.5 352.1 - - - - 566.0 1.1 95.0 84.8 1 1 1 1

*The result of Single Mask is reported for reference. opt.=optimal

s and i is the x-coordinate of ci to avoid moving it in left-
compaction. Otherwise, the cost is the x-coordinate of the
leftmost point in the moving range of ci. We add a directed
edge eij from i to j if (i) there is an edge between ci and cj in
the potential conflict graph Gp; (ii) ci has the same color as
cj ; and (iii) cj is on the right of ci, i.e., xj > xi. The cost of
eij is the required distance between ci and cj . With the left-
compaction graph, we calculate the longest path from s to each
node i, ∀ ci at the right end of some wire. The longest path
length from s to i means the leftmost x-coordinate that we
can place ci without any design rule violations, e.g., as shown
in Fig. 8(b), the longest paths are highlighted and the longest
path lengths from s to a, c and d are 3, 1 and 4, respectively.
Thus, a can be moved leftwards by 1 and the extension of the
corresponding wire can thus be reduced (Fig. 8(c)). Similarly,
we can build the left-compaction graph for the cuts in mask 2,
and the right-compaction graphs to reduce the extensions at
the left ends of wires.

4.5.2 Local Extension Reduction
The longest-path-based method can minimize the total ex-

tensions globally, but it cannot change the colors of the cuts
and the relative orders between the cuts that have potential
conflicts. Thus, after calling the global extension reduction
method, we will employ the following greedy extension re-
duction method that optimizes the extensions locally but is
flexible to change the colors and orders of the cuts.

First, all e-beam cuts will be moved to their original posi-
tions as they will not cause any conflict. Then, ∀ ci that is
not printed using e-beam, if xi 6= xoi where xoi is the original
x-coordinate of ci, we consider the possible positions to place
ci, i.e., {xoi , xoi +1, ..xi−1} if ci is at the right end of some wire,
or {xoi , xoi − 1, ..xi + 1} if ci is at the left end of some wire. At
each position, we consider the two possible colors for ci, and
test whether ci will conflict with cj , ∀ cj that has an edge with
ci in the potential conflict graph Gp. If there is no conflict,
we will commit the position and coloring for ci. Otherwise,
assuming that ci has a conflict with cj , we will try to change
the color of cj to resolve the conflict so that we can commit
the position and coloring for ci to reduce wire extension. We
consider two cases that the color of cj can be changed. The
first case is that ci is the only cut that cj has a conflict with.
The second case is that ci and cj are in different independent
components and the conflict edge between ci and cj will be a
bridge between the two components, and thus we can change
the colors of all the cuts in the component of cj to resolve the
conflict.

5. EXPERIMENTAL RESULTS

5.1 Experiment Setup
We implemented the proposed methods in C++, on a 2.39

GHz Linux machine with 16 CPU cores and 48 GB memory.
GUROBI [21] is employed as our ILP solver. The benchmarks
that we use are the M1 layouts used in [5] that are dense and
thus need 2 masks. As in [5], α in Eq. (1) is set to 1000.

For the purpose of comparison, we implemented a method
denoted as “optCR” that solves cut coloring and cut redistri-
bution optimally but separately. There are two steps. The
first step is to split a conflict graph into components and 2-
color the cuts in each component optimally (using ILP) with
the minimum number of unresolved conflicts, which will ben-
efit the next step of cut redistribution. In the second step, the
colors of the cuts will be imported to the ILP formulation in
Section 3 such that the ILP solver only needs to decide the
positions of the cuts to minimize Eq. (1).

5.2 Results
We compare the results of our graph-theoretic method, the

accurate ILP extended from [5,12], and the optCR method in
Table 1. We have applied the techniques of constructing and
simplifying potential conflict graph in Section 4.1 to speed up
the accurate ILP-based approach. We also show the published
results in [5] that uses a single mask for reference. (As different
machine is used in [5], we do not show the runtime of [5].) In
Table 1, “track#” means the number of tracks, “eb#” means
the number of e-beam cuts, “ext” represents the total exten-
sions of wires, “cost” is ext + α · eb# (i.e., Eq. (1)), “time” is
the wall-clock time in seconds, and “OM” means that there is
no solution because the program ran out of memory.

As shown in the table, with our graph-theoretic method,
e-beam cuts can be totally saved for 8 out of 10 datasets. For
the other 2 datasets, our method has also achieved the lower
bound of “eb#”, because there is a native conflict detected
in each dataset and one native conflict requires at least one
e-beam cut. Native conflict detection can be done as follows.
Given two cuts and their moving ranges, it is easy to detect the
case that no matter how the cuts move, they cannot be merged
nor spaced. Given a set of cuts and their moving ranges, if
there is an odd cycle in the conflict graph no matter how the
cuts move, at least one native conflict exists. Thus we have
achieved the optimal result of “eb#”for all the 10 datasets.
For “ext”, our results are very close to the optimal results
reported by the ILP extended from [5, 12], for the datasets
that can be solved by the ILP. The ILP cannot solve datasets
with more than 150 tracks in a reasonable amount of time.



Comparing with the optCR method that solves coloring
and redistribution optimally but separately, our method that
solves the two tasks simultaneously can achieve 566.0× fewer
ebeam cuts, 1.1× fewer extensions, and 95.0× smaller cost
on average. For runtime, our method can solve the largest
dataset within 19 seconds and is 84.8× faster than the optCR
method on average, which clearly demonstrates our efficiency.

For reference, comparing with the results using a single cut
mask, although using two masks will increase the mask cost,
our method can obtain 2107.0× fewer ebeam cuts, 2.5× fewer
extensions and 352.1× smaller cost on average, and thus the
manufacturing cost can be reduced dramatically.

6. CONCLUSION
In this paper, we have proposed algorithms to co-optimize

cut redistribution and mask assignment for 1D gridded de-
sign. Experiments showed that our graph-theoretic approach
is very effective and efficient. As 1D gridded design is widely
recognized as a promising solution to enable the scaling to
10nm technology node and beyond, we expect that this result
can benefit the industry of circuit design and manufacturing
and attract more research on the optimization for 1D gridded
design.
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APPENDIX
A. LIMITATIONS OF EXISTING ILP

We first analyze the limitation for C3. Consider the
two gaps and the four pairs of line ends in Fig. 3(a). In [5],
only the constraint in Eq. (3) is proposed for these two gaps
and it is claimed this is sufficient. A natural thought is that as
L(wj+1) andR(wi) are the closest pair among all the four pairs
of line ends, if this constraint is satisfied, the conflicts between
other pairs of line ends should also be resolved. However, the
problem for C3 is that if either of c2i and c2j+1 is printed
using e-beam, the distance between L(wj+1) and R(wi) may
be smaller than the required critical distance, and so do the
distances between the other three pairs of line ends.

Next we analyze the limitation for C5. Consider the
potential conflict between R(wi) and R(wj) in Fig. 3(b). The
following constraints are proposed in [5].

Eqs. (7)∼ (10),

x2i − x2k + I(1−m2i
2j) ≥ 0, (16)

x2i − x2k − I(1−m2i
2j) ≤ 0. (17)

Eqs. (16) and (17) are used to make sure that c2i and c2j
are aligned with a cut located on the track between the tracks
of c2i and c2j , namely c2k.

However, there are two problems with these constraints.
The first problem is that there can be more than one cut
that is possibly aligned with both c2i and c2j , e.g., as show in
Fig. 3(b), there are four such cuts, namely c2k, c2k+1, c2k+2

and c2k+3, but the above constraints only consider c2k. A
natural thought to solve the problem is to add the following
constraints to make c2i and c2j vertically aligned with c2k+1.

x2i − (x2k+1 −W ) + I(1−m2i
2j) ≥ 0, (18)

x2i − (x2k+1 −W )− I(1−m2i
2j) ≤ 0. (19)

However, this does not work because adding these constraints
will incorrectly force c2i to align with c2k and c2k+1 simulta-
neously. This problem also exists in [12]. The second problem
is that c2k can be an e-beam cut. In this case, c2i and c2k
cannot be merged even if they are vertically aligned, and thus
c2i and c2j cannot be merged through merging with c2k.

B. PROOF OF LEMMA 1
Proof. (the“if”part) Assume there exists such i. If c1, ...cn

are all colored the same, all of them can be merged together
and there is thus no conflict. If c1, ...ci−1 are with one color
and ci, ...cn are with another color, there is no conflict be-
tween any cut in {c1, ...ci−1} and any cut in {ci, ...cn}. Be-
sides, c1, ...ci−1 can be merged together and ci, ...cn can also
be merged. Thus, there is no conflict.

(the “only if” part) Assume there does not exist such i. If
c1 and cn are colored the same, there must exist 2 ≤ i ≤ n−1
such that ci is colored differently from c1, which will result in
a conflict because c1 and cn cannot be merged. If c1 and cn
are colored differently, there must exist 2 ≤ i < j ≤ n−1 such
that ci is colored the same as cn while cj is colored the same
as c1, which will result in a conflict between ci and cn and a
conflict between cj and c1.

http://www.gurobi.com

