
E-BLOW: E-Beam Lithography Overlapping aware Stencil Planning for MCC System
Bei Yu, Kun Yuan†, Jhih-Rong Gao, and David Z. Pan

ECE Dept. University of Texas at Austin, Austin, TX; †Cadence Inc., CA

Electric Beam Lithography (EBL)

IPromising candidate for next generation lithography process
IVariable Shaped Beam (VSB)
ICharactor Projection (CP): a pattern is pre-designed on the stencil, then it can be

printed in one electronic shot;
IKey limitation: has been and still is the low throughput.

Electrical Guns

Wafer

2nd Apenture

Shaping Apentures

(a)

Electrical Gun

Wafer

Stencil

Shaping Apenture

(b)
Figure : (a) VSB; (b) CP.

Multi-Column Cell (MCC) system

Electrical Guns

Shaping Apentures

w1 w2

w3 w4

4 Regions on Wafer

Stencils

ISeveral independent character projections (CP) are used to further speed-up the
writing process.

IEach CP is applied on one section of wafer, and all CPs can work parallelly to
achieve better throughput.

IDifferent CPs share one stencil design.

Problem Formulation

Some Definitions
In an MCC system with P CPs, the whole wafer is divided into P regions
{w1,w2, . . . ,wP}, and each region is written by one particular CP. For each
character candidate ci ∈ CC, its writing time through VSB mode is denoted as ni,
while its writing time through CP mode is 1. Suppose ci repeats tic times on region
wc. Let ai indicate whether ci is selected. Therefore, for region wc the total writing
time Tc is as follows:

Tc =
n∑

i=1

ai · (tic · 1) +
n∑

i=1

(1− ai) · (tic · ni)

=
n∑

i=1

tic · ni −
n∑

i=1

tic · (ni − 1) · ai = T VSB
c −

n∑
i=1

Ric · ai

The total writing time of the MCC system is formulated as follows:

Ttotal = max{Tc} = max{T VSB
c −

n∑
i=1

Ric · ai},∀c ∈ P (1)

Overlapping aware Stencil Planning (OSP) for MCC system
Given a set of character candidate CC, select a subset CCP out of CC as
characters, and place them on the stencil. The objective is to minimize the total
writing time Ttotal expressed by (1), while the placement of CCP is bounded by the
outline of stencil. The width and height of stencil is W and H, respectively.

1D-OSP and 2D-OSP

A B C

D E F

(a)

A B C

D E
F

(b)
Figure : (a) 1D-OSP; (b) 2D-OSP.

E-BLOW for 1D-OSP

Overall Flow

Apply S-Blank
Assumption

Successive Rounding

Simplified LP Formulation

Refinement

Output 1D-Stencil

Solve New LP

Finish?

Update LP

No

Yes

Regions Info

Characters
Info

INovel iterative solving framework to search near-optimal solution
ILinear programming (LP) relaxation with lower bound theoretically
ISuccessive rounding
IDynamic programming based refinement

E-BLOW for 1D-OSP (cont.)

ILP formulation
min Ttotal (2)

s.t Ttotal ≥ T VSB
c −

n∑
i=1

(
M∑

k=1

Ric · aik), ∀c ∈ P (2a)

xi + wi ≤W , ∀i ∈ N (2b)
m∑
k

aik ≤ 1, ∀k ∈ M (2c)

xi + wij − xj ≤W (2 + pij − aik − ajk) (2d)
xj + wji − xi ≤W (3− pij − aik − ajk) (2e)
aik,ajk,pij : 0− 1 variable (2f)

Symmetrical Blank (S-Blank) Assumption
I the blanks of each character is symmetry (left slack = right slack).
INote that for different characters i and j , their slacks si and sj can be different.

Theorem

Under S-Blank assumption, the greedy approach can get maximum
overlapping space

∑
i si −max{si}.

Simplified ILP Formulation
max

∑
i

∑
j

aij · profiti (3)

s.t.
∑

i

(wi − si) · aij ≤W − Bj,∀j (3a)

Bj ≥ si · aij,∀i (3b)∑
j

aij ≤ 1, ∀ci ∈ CC (3c)

aij = 0 or 1 (3d)
The simplified ILP formulation is similar to the following multiple knapsack
problem:

max
∑

i

∑
j

(wi − si) · aij · ratioi (3′)

s.t.
∑

i

(wi − si) · aij ≤W −maxs (3a′)

(3c)− (3d)
where ratioi = profiti/(wi − si), and maxs is the maximum horizontal slack length of
every character, i.e. maxs = max{si|i = 1,2, . . . ,n}.

Lemma

If each ratioi is the same, the multiple knapsack problem (3′) can find a
1/2−approximation algorithm using LP Rounding method.

Theorem

The LP Rounding solution of (3) can be a 0.5/α− approximation to
program (3′).

Successive Relaxation Because of the reasonable LP rounding property, we
propose a successive relaxation algorithm to solve program (3) iteratively.

Algorithm: SuccRounding(thinv)

Require: ILP Formulation (3)
1: set all aij to variables;
2: repeat
3: update profiti for all variables aij;
4: solve relaxed LP of (3);
5: repeat
6: find apq = max{aij, and ci can insert into row rj};
7: for all aij ≥ apq × thinv do
8: if ci can be assigned to row rj then
9: aij = 1 and set it to a non-variable;

10: Update capacity of row rj;
11: end if
12: end for
13: until cannot find apq
14: until

One key step of the Algorithm is the profiti update (line 3). For each character ci,
we set its profiti as follows:

profiti =
∑

c

tc
tmax
· (ni − 1) · tic (4)

where tc is current writing time of region wc, and tmax = max {tc,∀c ∈ P}. Through
applying the profiti, the region wc with longer writing time would be considered
more during the LP formulation.

1D-OSP Refinement Simplified formulation and successive relaxation are under
the symmetrical blank assumption. Although it can be effectively solved, for
asymmetrical cases it would lose some optimality. To compensate the losing, we
present a dynamic programming based refinement procedure.

Algorithm: Refine(k)

1: if k = 1 then
2: Generate partial solution (w1, sl1, sr1);
3: else
4: Refine(k-1);
5: for each partial solution (w , l , r) do
6: (w1, l1, r1) = (w + wk −min(srk, l), slk, r);
7: (w2, l2, r2) = (w + wk −min(slk, r), l , srk);
8: Replace (w , l , r) by (w1, l1, r1) and (w2, l2, r2);
9: if solution set size ≥ threshold then

10: SolutionPruning();
11: end if
12: end for
13: end if

E-BLOW for 2D-OSP

Overall Flow

KD-Tree based
Clustering

Simulated Annealing
based Packing

Output 2D-Stencil

Pre-FilterRegions Info

Characters
Info

ISimulated annealing based framework.
ISequence Pair as topology representation.
IPre-filter process to remove bad characters.
IClustering is applied to achieve speedup.

KD-Tree based Clustering

c5

c2

c4

c3

c1
c7

c6

c8

c9

Horizontal Space

Ve
rti

ca
l S

pa
ce

c5

c2

c3 c4

c1

c7

c6 c8

c9

ISpeed-up the process of finding available pair (ci, cj);
IFrom O(n) to O(logn);
IFor c2, to find another candidate with the similar space, only scan c1− c5.

Experimental Results

I Implemented in C++
I Intel Core 3.0GHz Linux machine with 32G RAM
IGUROBI as linear programming (LP) solver

Shot Number Comparison

 900,000

 1,000,000

1D−1
1D−2

1D−3
1D−4

1M−1
1M−2

1M−3
1M−4

1M−5
1M−6

1M−7
1M−8

S
h
o
t

N
u
m

b
er

 f
o
r

1
D

 c
as

es

Greedy in [TCAD’12]

[TCAD’12]

E−BLOW

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

For 1D cases, the greedy algorithm introduces 47% more shots number, and
[TCAD’12] introduces 19% more shots number.

2D−2
2D−3

2D−4
2M−1

2M−2
2M−3

2M−4
2M−5

2M−6
2M−7

2M−8

S
h
o
t

N
u
m

b
er

 f
o
r

2
D

 c
as

es

Greedy in [TCAD’12]

[TCAD’12]

E−BLOW

 0

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 1,400,000

2D−1

For 2D cases, greedy introduces 30% more shot number, while [TCAD’12]
introduces 14% more shot number.

CPU Runtime Comparison

2
M

−
2

2
M

−
3

2
M

−
4

2
M

−
5

2
M

−
6

2
M

−
7

2
M

−
8

R
u
n
ti

m
e
 (

s)

[TCAD’12]

E−BLOW

 1

 10

 100

 1,000

 10,000

1
D

−
1

1
D

−
2

1
D

−
3

1
D

−
4

1
M

−
1

1
M

−
2

1
M

−
3

1
M

−
4

1
M

−
5

1
M

−
6

1
M

−
7

1
M

−
8

2
D

−
1

2
D

−
2

2
D

−
3

2
D

−
4

2
M

−
1

Compared with [TCAD’12], E-BLOW can reduce 34.3% of runtime for 1D cases,
while 2.8× speedup for 2D cases.

Acknowledgements

IThis work is supported in part by NSF and NSFC.

Bei Yu – ECE Department – University of Texas at Austin – Austin, USA E-Mail: bei@cerc.utexas.edu WWW: http://www.cerc.utexas.edu/utda

