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ABSTRACT
Privacy becomes a more and more serious concern in applications
involving microdata. Recently, efficient anonymization has attracted
much research work. Most of the previous methods use global re-
coding, which maps the domains of the quasi-identifier attributes to
generalized or changed values. However, global recoding may not
always achieve effective anonymization in terms of discernability
and query answering accuracy using the anonymized data. More-
over, anonymized data is often used for analysis. As well accepted
in many analytical applications, different attributes in a data set
may have different utility in the analysis. The utility of attributes
has not been considered in the previous methods.

In this paper, we study the problem of utility-based anonymiza-
tion. First, we propose a simple framework to specify utility of at-
tributes. The framework covers both numeric and categorical data.
Second, we develop two simple yet efficient heuristic local recod-
ing methods for utility-based anonymization. Our extensive perfor-
mance study using both real data sets and synthetic data sets shows
that our methods outperform the state-of-the-art multidimensional
global recoding methods in both discernability and query answer-
ing accuracy. Furthermore, our utility-based method can boost the
quality of analysis using the anonymized data.
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1. INTRODUCTION
Recently, privacy becomes a more and more serious concern in

applications involving microdata, which refers to data published in
its raw, non-aggregated form [17]. One important type of privacy
attack is re-identifying individuals by joining multiple public data
sources. For example, according to [15], more than 85% of the
population of the United States can be uniquely identified using
their zipcode, gender, and date of birth.

To protect privacy against this type of attacks, k-anonymity was
proposed [12, 15]. A data set is k-anonymous (k ≥ 1) if each
record in the data set is indistinguishable from at least (k − 1)
other records within the same data set. The larger the value of k,
the better the privacy is protected.

Since the concept of k-anonymity has been proposed, efficient
methods for anonymization has attracted much research work. A
few k-anonymization algorithms have been developed. We shall re-
view the related work briefly in Section 2. Generally, to achieve k-
anonymity, those methods generalize or suppress the quasi-identifier
attributes, which are the minimal set of attributes in the table that
can be joined with external information to re-identify individual
records.

Information loss is an unfortunate consequence of anonymiza-
tion. In order to make the anonymized data as useful as possible,
it is required to reduce the information loss as much as possible.
A few models have been proposed to measure the usefulness of
anonymized data. For example, the discernability model [4] tries
to minimize the number of tuples that are indistinguishable, as long
as they satisfy the k-anonymity requirement.

In this paper, we study the problem of k-anonymization and fo-
cus on two interesting issues: anonymization using heuristic local
recoding and utility-based anonymization.

1.1 Global and Local Anonymization



Many recent methods (e.g., [4, 8, 9]) use global recoding, which
maps the domains of the quasi-identifier attributes to generalized or
changed values. In other words, the data space is partitioned into
a set of (non-overlapping) regions. The anonymization maps all
tuples in a region to the same generalized or changed tuple. For ex-
ample, Figures 1(b) demonstrates a 3-anonymization using global
recoding for the table in Figures 1(a), where (age, zipcode) is the
quasi-identifier. Tuples R3 an R4 in Figures 1(a) are identical.
They are mapped to the same generalized tuple in global recoding.

In contrast, local recoding maps (non-distinct) individual tuple to
generalized tuples. For example, Figure 1(c) shows a 3-anonymization
using local recoding of the same table in Figures 1(a). The two
identical tuples, R3 and R4, are mapped to different generalized
tuples in local recoding. Clearly, global recoding can be regarded
as a specific type of local recoding.

Interestingly, from Figure 1, we can observe that local recoding
may achieve a less information loss than global recoding. In our
example, the two generalized tuples in global recoding have the
sizes of intervals 8 and 5 in age, and 1 and 0 in zipcode, respec-
tively. In local recoding, the sizes of intervals are 6 and 2 in age,
and 1 and 2 in zipcode, respectively. By intuition, smaller the sizes
of intervals in the generalized tuples, less information loss in the
anonymization.

Can we use local recoding to achieve less information loss in
anonymization effectively? Generally, optimal k-anonymity is NP-
hard [10, 2]. In this paper, we propose two simple yet efficient
heuristic algorithms using local recoding for k-anonymization. Our
extensive empirical study on both real data sets and synthetic data
sets show that our method outperforms the state-of-the-art global
recoding method in both the discernability and the accuracy of
query answering.

1.2 Utility-Based Anonymization
Anonymized data is often for analysis and data mining. As well

recognized in many data analysis applications, different attributes
may have different utility. For example, consider anonymizing a
data set about patients for disease analysis. Suppose in order to
achieve k-anonymity, we can generalize from a five-digit full zip-
code to a four-digit prefix (e.g., from 53712 to 5371∗). Alterna-
tively, we can also generalize attribute age to age groups (e.g., from
23 to [20, 30]). In many cases, the age information is critical to dis-
ease analysis, while the information loss on the accurate location is
often acceptable (a four digit prefix in fact still identifies a relatively
local region). Thus, the age attribute has more utility than the zip-
code attribute, and should be retained as accurately as possible in
anonymization.

Can we make the anonymization utility aware? Utility of at-
tributes has not been considered by previous anonymization meth-
ods. In this paper, we propose a model for utility-based anonymiza-
tion. We consider both numeric data and categorical data with and
without hierarchies. We present a simple method to specify util-
ity of attributes and push them into the heuristic local recoding
anonymization methods. Our experimental results show that the
utility-based anonymization improves the accuracy in answering
targeted queries substantially.

Paper Organization
The rest of the paper is organized as follows. In section 2, we recall
the notions related to anonymization, and review the related work.
We present our utility specification framework in Section 3. Our

heuristic local recoding methods are developed in Section 4. An
extensive performance study on both real data sets and synthetic
data sets is reported in Section 5. The paper is concluded in Sec-
tion 6.

2. K-ANONYMITY AND RELATED WORK
Consider a table T = (A1, . . . , An). A quasi-identifier is a min-

imal set of attributes (Ai1 , . . . , Ail) (1 ≤ i1 < · · · < il ≤ n) in
T that can be joined with external information to re-identify indi-
vidual records. In this paper, we assume that the quasi-identifier is
specified by the administrator based on the background knowledge.
Thus, we focus on how to anonymize T to satisfy the k-anonymity
requirement.

Formally, given a parameter k and the quasi-identifier (Ai1 , . . . , Ail),
a table T is said k-anonymous if for each tuple t ∈ T , there exist
at least another (k−1) tuples t1, . . . , tk−1 such that those k tuples
have the same projection on the quasi-identifier, i.e., t(Ai1 ,...,Ail

) =
t1(Ai1

,...,Ail
) = · · · = tk−1(Ai1

,...,Ail
) . Tuple t and all other tu-

ples indistinguishable from t on the quasi-identifier form an equiv-
alence class. We call the class the group that t is generalized.

Given a table T with the quasi-identifier and a parameter k, the
problem of k-anonymization is to compute a view T ′ that has the
same attributes as T such that T ′ is k-anonymous and T ′ is as close
to T as possible according to some quality metric. We shall discuss
the quality metrics soon.

Since the attributes not in the quasi-identifier do not need to be
changed, to keep our discussion simple but without loss of general-
ity, hereafter we consider only the attributes in the quasi-identifier.
That is, for table T (A1, . . . , An) in question, we assume (A1, . . . , An)
is the quasi-identifier.

K-anonymization was proposed by Samarati and Sweeney [11,
13, 15, 14]. Generally, data items are recoded in anonymization.
Here, we regard suppression as a specific form of recoding that
recodes a data item to null value (i.e., unknown).

Two types of recoding can be used [17]: global recoding and lo-
cal recoding, as described and demonstrated in Section 1.1. Many
previous methods use global recoding. In [11, 13], full-domain
generalization, a specific type of global recoding, was developed,
which maps the whole domain of each quasi-identifier attribute to a
more general domain in the domain generalization hierachy. Full-
domain generalization guarantees that all values of a particular at-
tribute still belong to the same domain after generalization.

To achieve full-domain generalization, two types of partitioning
can be applied. First, single-dimensional partitioning [4, 7] divides
an attribute into a set of non-overlapping intervals, and each in-
terval will be replaced by a summary value (e.g., the mean, the
median, or the range). On the other hand, (strict) multidimensional
partitioning [9] divides the domain into a set of non-overlapping
multidimensional regions, and each region will be generalized into
a summary tuple.

Generally, anonymization is accompanied by information loss.
Various models have been proposed to measure the information
loss. For example, the discernability model [4] assigns to each tuple
t a penalty based on the size of the group that t is generalized, i.e.,
the number of tuples equivalent to t on the quasi-identifier. That is,

CDM =
X

E∈group-bys on quasi-identifier
|E|2.

Alternatively, the normalized average equivalence class size met-



Row-id Age Zipcode
R1 24 53712

R2 25 53711

R3 30 53711

R4 30 53711

R5 32 53712

R6 32 53713
(a) The original table.

Row-id Age Zipcode
R1 [24-32] [53712-53713]
R2 [25-30] 53711

R3 [25-30] 53711

R4 [25-30] 53711

R5 [24-32] [53712-53713]
R6 [24-32] [53712-53713]

(b) 3-anonymization by global recoding.

Row-id Age Zipcode
R1 [24-30] [53711-53712]
R2 [24-30] [53711-53712]
R3 [24-30] [53711-53712]
R4 [30-32] [53711-53713]
R5 [30-32] [53711-53713]
R6 [30-32] [53711-53713]

(c) 3-anonymization by local recoding.

Figure 1: Global recoding and local recoding. The row-ids are for reference only and are not released with the data. Thus, the
row-ids are not part of the quasi-identifier.

ric was given in [9]. The intuition of the metric is to measure how
well the partitioning approaches the best case where each tuple is
generalized in a group of k indistinguishable tuples. That is,

CAV G =
number of tuples in the table

number of group-bys on quasi-identifier · k .

The quality of anonymization can also be evaluated based on its
usefulness in data analysis applications, such as classification [6,
16].

The ideal anonymization should minimize the penalty. However,
theoretical analysis [2, 10, 9, 3, 1] indicates that the problem of
optimal anonymization under many non-trivial quality models is
NP-hard. A few approximation methods were developed [3], such
as datafly [14], annealing [18], and Mondrian multidimensional k-
anonymity [9]. Interestingly, some optimal methods [4, 8] with
exponential cost in the worst case were proposed. The experimental
results in those studies show that they are feasible and can achieve
good performance in practice.

3. UTILITY-BASED ANONYMIZATION
Without loss of generality, in this paper we assume that general-

ization is used in anonymization. That is, when a tuple is general-
ized, the ranges of the group of tuples that are generalized are used
to represent the generalization, as illustrated in Figure 1. If other
representations such as mean or median are used, the definitions
can be revised straightforwardly and our methods still work.

3.1 Utility-Based Anonymization: Motivation
In previous methods, the quality metrics, such as the discern-

ability metric and the normalized average equivalence class size
metric discussed in Section 2, mainly focus on the size of groups in
anonymization. In an anonymized table, when each group of tuples
sharing the same projection on the quasi-identifier has k tuples, the
penalty metrics are minimized. However, such metrics may not
lead to high quality anonymization.

EXAMPLE 1 (QUALITY METRICS). Suppose we want to achieve
2-anonymity for the six tuples shown in Figure 2. (X, Y ) is the
quasi-identifier. The six tuples can be anonymized in three groups:
{a, b}, {c, d}, and {e, f}. In this anonymization scheme, both the
discernability metric CDM and the normalized average equivalence
class size metric CAV G are minimized.

Let us consider the utility of the anonymized data. Suppose each
group is generalized using the range of the tuples in the group.
That is, a and b are generalized to ([10, 20], [60, 70]); c and d are
generalized to ([20, 50], [20, 50]); and e and f are generalized to
([50, 60], [10, 15]).

20

20 40

Y

X
ab

ef
O 60

60 c

d
40

Figure 2: The six tuples in Example 1.

In order to measure how well the generalized tuples approximate
the original ones, for each tuple we can use the sum of the inter-
val sizes on all attributes of the generalized tuple to measure the
uncertainty of the generalized tuples. That is, U(a) = U(b) =
10 + 10 = 20. Similarly, we get U(c) = U(d) = 60 and
U(e) = U(f) = 15. The total uncertainty of the anonymized
table is the sum of the uncertainty of all tuples, i.e., U(T ) =P

t∈T U(t) = 20 + 20 + 60 + 60 + 15 + 15 = 190. By in-
tuition, the uncertainty reflects the information loss. The less the
uncertainty, the less information is lost.

On the other hand, we may anonymize the tuples in two groups:
{a, b, c} are generalized to ([10, 20], [50, 70]), and {d, e, f} are
generalized to ([50, 60], [10, 20]). In fact, the data set is 3-anonymous,
which is better than 2-anonymous in terms of privacy preservation.
Moreover, the total uncertainty in this anonymization is 150, lower
than the 2-anonymity scheme.

However, this anonymization scheme has a higher penalty than
the 2-anonymous scheme in both the discernability metric CDM

and the normalized average equivalence class size metric CAV G.
In other words, optimizing the quality metrics on group size may
not always lead to anonymization that minimizes the information
loss.

Can we have a quality metric that can measure the utility of the
anonymized data? Such a utility-based metric should capture the
following two aspects.

• The information loss caused by the anonymization. When a
record is anonymized, it is generalized in its quasi-identifier.
The metric should measure the information loss of the gen-
eralization with respect to the original data.

• The importance of attributes. As well accepted in data anal-
ysis such as aggregate queries, different attributes may have
different importance in data analysis. In anonymization, can
we introduce less uncertainty to the important attributes? Such
utility-aware anonymization may help to improve the quality
of analysis afterwards.



3.2 Weighted Certainty Penalty
We introduce the concept of certainty penalty to capture the un-

certainty caused by generalization.

3.2.1 Numeric Attributes
First, let us consider the case of numeric attributes. Let T be

a table with quasi-identifier (A1, . . . , An), where all attributes are
numeric. Suppose a tuple t = (x1, . . . , xn) is generalized to tuple
t′ = ([y1, z1], . . . , [yn, zn]) such that yi ≤ xi ≤ zi (1 ≤ i ≤ n).
On attribute Ai, the normalized certainty penalty is defined as

NCPAi(t) =
zi − yi

|Ai| ,

where |Ai| = maxt∈T {t.Ai} −mint∈T {t.Ai} is the range of all
tuples on attribute Ai.

Let each attribute Ai be associated with a weight wi to reflect its
utility in the analysis on the anonymized data. Then, the weighted
certainty penalty of a tuple is given by

NCP (t) =

nX
i=1

(wi ·NCPAi(t)) =

nX
i=1

(wi · zi − yi

|Ai| ).

Clearly, when all weights are set to 1 and all attributes have
ranges [0, 1], the weighted certainty penalty is the L1 norm distance
between points (maxt∈G{t.A1}, . . .,
maxt∈G{t.An}) and (mint∈G{t.A1}, . . . , mint∈G{t.An}),
where G is the equivalence group that t belongs to.

Our utility-based metric is given by the total weighted certainty
penalty on the whole table. That is,

NCP (T ) =
X
t∈T

NCP (t).

3.2.2 Categorical Attributes
Distance is often not well defined on categorical attributes, which

makes measuring utility on categorical attributes difficult. In some
previous methods (e.g., [8, 9]), it is assumed that a total order exists
on all values in a categorical attribute. In many applications, such
an order may not exist. For example, sorting all zipcodes in their
numeric order may not reflect the utility properly. Two regions may
be adjacent but their zipcodes may not be consecutive.

More often than not, hierarchies exist in categorical attributes.
For example, zipcodes can be organized into hierarchy of regions,
cities, counties, and states.

Let v1, . . . , vl be a set of leaf nodes in a hierarchy tree. Let u be
the node in the hierarchy on the attribute such that u is an ancestor
of v1, . . . , vl, and u does not have any descendant that is still an
ancestor of v1, . . . , vl. u is called the closest common ancestor of
v1, . . . , vl, denoted by ancestor(v1, . . . , vl). The number of leaf
nodes that are descendants of u is called the size of u, denoted by
size(u).

Can we use the hierarchy information to measure the utility on
categorical attributes?

EXAMPLE 2 (UTILITY ON CATEGORICAL ATTRIBUTES). Consider
a categorical attribute of domain {a, b, c, d, e, f, g}. Suppose a hi-
erarchy exists on the attribute as shown in Figure 3. The values
appear in the leaf nodes in the hierarchy tree.

Intuitively, if we generalize tuples having values b and c, the
anonymized tuples have good utility on this categorical attributes,
since b and c share the same parent in the hierarchy. On the other
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Figure 3: A hierarchy on a categorical attribute.

hand, putting a and f into the same generalized group may have
poor utility on the attribute since the common ancestor of a and f
is far away from f .

One may wonder whether the shortest distance between u and v
in the hierarchy tree can be used as the certainty penalty. Unfortu-
nately, it does not work well. Consider Figure 3 again. Intuitively,
generalizing d and e together is better than generalizing a and d
together, since the closest common ancestor of d and e is in a hi-
erarchical level lower than the closest common ancestor of a and
d. However, the shortest distance between d and e is 5, while the
shortest distance between a and d is only 4. If we use the shortest
distance as the guide, then merging a and d is better than merging
d and e. In other words, the shortest distance may be misleading.

To measure the utility of merging two values x and y into the
same generalized group, we can observe that the critical factor is
for the closest common ancestor u of x and y, how many other
values are also the descendants of u. The smaller the number, the
smaller the uncertainty introduced by the generalization.

Based on the observation in Example 2, we define the certainty
penalty on categorical attributes as follows.

Suppose a tuple t has value v on a categorical attribute A. When
it is generalized in anonymization, the value will be replaced by a
set of values {v1, . . . , vl}, where v1, . . . , vl are the values of tu-
ples on the attribute in the same generalized group. We define the
normalized certainty penalty of t as follows.

NCPA(t) =
size(u)

|A| ,

where |A| is the number of distinct values on attribute A. Here,
we assume that each leaf node is of the same importance. The def-
inition can be straightforwardly extended by assigning weights to
internal nodes to capture the more important leaf nodes and internal
hierarchical structures. Limited by space, we omit the details here.

EXAMPLE 3. Let us consider the cases discussed in Example 2
again. Putting a and d together in a group has penalty 1, and putting
d and e together in a group has penalty 6

7
only, which is smaller than

the case of a and d.

Putting things together, for a table consisting of both numeric
and categorical attributes, the total weighted normalized certainty
penalty is the sum of the weighted normalized certainty penalty of
all tuples. That is,

NCP (T ) =
X
t∈T

nX
i=1

(wi ·NCPAi(t)),



where NCPAi(t) should be computed according to whether Ai is
a numeric or categorical attribute.

Given a table T , a parameter k, the weights of attributes and the
hierarchies on categorical attributes, the problem of optimal utility-
based anonymization is to compute a k-anonymous table T ′ such
that the weighted normalized certainty penalty on T ′ is minimized.

3.3 Complexity
The previous studies show that the problem of optimal k-anonymity

is NP-hard under various quality models. The utility-based model
we propose here is a generalization of the suppression model. We
have the following results on the complexity.

LEMMA 1 (CATEGORICAL ATTRIBUTES). Suppose the
quasi-identifier has only categorical attributes. The problem of op-
timal utility-based k-anonymization is NP-hard for k ≥ 2.
Proof sketch. We can show that the suppression model used in [2]
is a special case of the weighted normalized certainty penalty de-
fined here, where all weights are set to 1 and all hierarchies have
only two levels: the detailed values and suppression. The lemma
follows from the result in [2].

Following from the lemma, we have the following result.

THEOREM 1 (COMPLEXITY). The problem of optimal
utility-based anonymization is NP-hard.

In fact, for a table consisting of only numeric attributes, the prob-
lem is still NP-hard. Limited by space, we omit the details here.

4. GREEDY METHODS
In this section, we develop heuristic methods for utility-based

anonymization. We propose two greedy algorithms. The first method
conducts a bottom-up search, while the second one works top-
down.

4.1 The Bottom-Up Method
To maximize the utility of the anonymization of a tuple, we

may “cluster” the tuples locally according to the weighted certainty
penalty. Those compact clusters having at least k tuples can be gen-
eralized. This idea leads to our bottom-up method.

At the beginning, we treat each tuple as an individual group. In
each iteration, for each group whose population is less than k, we
merge the group with the other group such that the combined group
has the smallest weighted certainty penalty. The iteration goes on
until every group has at least k tuples. The algorithm is shown in
Figure 4.

The bottom-up algorithm is a greedy method. In each round, it
merges groups such that the resulted weighted certainty penalty is
locally minimized. In one iteration, if one group is merged with
multiple groups, it is possible that the group becomes larger than k.
In order to avoid over-generalization, if a group has more than 2k
tuples, then the group should be split. It is guaranteed that in the
resulted table, each group has up to (2k − 1) tuples.

Please note that, unlike many previous methods that try to mini-
mize the average number of tuples per group, our algorithms try to
reduce the weighted certainty penalty, which reflects the utility of
the anonymized data. At the same time, they also keep the number
of tuples per group small.

Input: a table T , parameter k, weights of attributes, and
hierarchies on categorical attributes;

Output: a k-anonymous table T ′;
Method:
1: Initialization: create a group for each tuple;
2: WHILE there exists some group G such that |G| < k DO {
3: FOR each group G such that |G| < k DO {
4: scan all other groups once to find group G′ such

that NCP (G ∪G′) is minimized;
5: merge groups G and G′;

}
6: FOR each group G such that |G| ≥ 2k DO

7: split the group into b |G|
k
c groups such that each

group has at least k tuples;
}

8: generalize and output the surviving groups;

Figure 4: The bottom-up algorithm.

EXAMPLE 4 (ADVANTAGES OF THE BOTTOM-UP METHOD).
To understand the difference between our method and the previous
methods, let us check the case in Figure 2. The bottom-up method
generates two groups: {a, b, c} and {d, e, f}, as expected in Ex-
ample 1. Although it does not minimize the average group size, it
optimizes the utility of the anonymized data – the information loss
is better than any 2-anonymous scheme in this example. Moreover,
as a byproduct, the result is 3-anonymous, which means a stronger
protection of privacy.

After the k-th round, the number of tuples in a group is at least
2k. Therefore, by at most dlog2 ke iterations, each group has at
least k tuples, and thus the generalized groups satisfy the k-anonymity
requirement. The complexity of the algorithm is O(dlog2 ke|T |2)
on table T .

The bottom-up method is a local recoding method. It does not
split the domain. Instead, it only searches the tuples. Different
groups may have overlapping ranges. Moreover, in the step of split-
ting, several tuples with the identical quasi-identifier may be split
into different groups.

4.2 A Top-Down Approach
The major cost in the bottom-up method is to search for the clos-

est groups (Step 4 in Figure 4). In the bottom-up method, we have
to use a two-level loop to conduct the search. We observe, if we
can partition the data properly so that the tuples in each partition
are local, then the search of the nearest neighbors can be sped up.
Motivated by this observation, we develop the top-down approach.

The general idea is as follows. We partition the table iteratively.
A set of tuples is partitioned into subsets if each subset is more
local. That is, likely they can be further partitioned into smaller
groups that reduce the weighted certainty penalty. After the parti-
tioning, we merge the groups that are smaller than k to honor the
k-anonymity requirement.

To keep the algorithm simple, we consider binary partitioning.
That is, in each round, we partition a set of tuples into two subsets.
The algorithm framework is shown in Figure 5.

Now, the problem becomes how we can partition a set of tuples
into two subsets so that they are compact and likely lead to small
weighted certainty penalty. We adopt the following heuristic. We



Input: a table T , parameter k, weights of attributes,
hierarchies on categorical attributes;

Output: a k-anonymous table T ′;
Method:
1: IF |T | ≤ k THEN RETURN;
2: ELSE {
3: partition T into two exclusive subsets T1 and T2 such

that T1 and T2 are more local than T , and either T1

or T2 have at least k tuples;
4: IF |T1| > k THEN recursively partition T1;
5: IF |T2| > k THEN recursively partition T2;

}
6: adjust the groups so that each group has at least k tuples;

Figure 5: The framework of the top-down greedy search
method.

form two groups using the two seed tuples that cause the highest
certainty penalty if they are put into the same group, and assign the
other tuples into the two groups according to the two seed tuples.

Technically, we want to find tuples u, v ∈ T that maximize
NCP (u, v). u and v become the seed tuple of groups Gu and
Gv , respectively.

The cost of finding u, v such that NCP (u, v) is maximized is
O(|T |2). To reduce the cost, we propose a heuristic method here.
We randomly pick a tuple u1. By scanning all tuples once, we
can find tuple v1 that maximizes NCP (u1, v1). Then, we scan all
tuples again, find tuple u2 that maximizes NCP (u2, v1). The iter-
ation goes on a few rounds until NCP (u, v) does not increase sub-
stantially. Our experimental results on both the real data sets and
the synthetic data sets show that the maximal weighted certainty
penalty converges quickly. By up to 3 rounds, we can achieve 97%
of the maximal penalty. By up to 6 rounds, we can achieve more
than 98.75% of the maximal penalty. In practice, we can choose a
small integer as the number of rounds to find the seed tuples.

Once the two seed tuples are determined, two groups Gu and Gv

are created. Then, we assign other tuples to the two groups one by
one in a random order. For tuple w, the assignment depends on
NCP (Gu, w) and NCP (Gv, w), where Gu, Gv are the groups
formed so far. Tuple w is assign to the group that leads to lower
uncertainty penalty.

If at least one group has k or more tuples, then the partitioning
is conducted. The top-down method is recursively applied to those
groups having at least k tuples.

We have a postprocessing step to adjust for those groups with
less than k tuples. If one group G has less than k tuples, we ap-
ply the local greedy adjustment similar to the bottom-up approach.
That is, we consider two alternatives. First, we can find a set G′ of
(k−|G|) tuples in some other group that has more than (2k−|G|)
tuples such that NCP (G∪G′) is minimized. Second, we compute
the increase of penalty by merging G with the nearest neighbor
group of G. By comparing the two penalty measures, we decide
whether G′ is moved to G or G is combined with its nearest neigh-
bor group. Such adjustments should be done until every group has
at least k tuples, i.e., the k-anonymity requirement is satisfied.

In worst case, the partition depth is bounded by O(|T |). In each
step of partition, it takes O(m) time cost to partition the m tuples
in the current set into two subsets. Thus, the overall partitioning

cost is O(|T |2). After the top-down partitioning, in the worst case,
we may have to adjust b |T |

2k
c groups each having less than k tuples.

Thus, the cost of adjustment is O(|T |2) in the worst case. However,
in practice, the number of groups that are smaller than k is much
less than the worst case. As shown in our experiments, the top-
down method is clearly faster than the bottom-up method.

The top-down method is also a local recoding method, since in
the adjustment step, similar to the bottom-up method, two tuples
identical in the quasi-identifier may be assigned to two different
groups.

5. EXPERIMENTAL RESULTS
To evaluate the two heuristic methods proposed in this paper, we

conducted an extensive empirical study using both real data sets
and synthetic data sets.

5.1 Settings and Evaluation Criteria
We compare three methods: the mondarian multidimensional

k-anonymization method [9], the bottom-up method and the top-
down method developed in this paper. According to [9], the mon-
darian multidimensional k-anonymization method (called Multi-
Dim for short hereafter) is so far the best method in both quality
(measured by the discernability penalty) and efficiency. The gen-
eral idea of the method is a top-down greedy search that is similar
to building kd-trees [5]. At each step, it chooses a dimension to
split the data set at the median of the dimension. Heuristically, the
dimension with the widest normalized range of values is chosen.

We measure the quality of the anonymization using three crite-
ria: the certainty penalty, the discernability penalty, and the error
rate in query answering. The certainty penalty proposed in this pa-
per measures the utility of the anonymization. The discernability
penalty is a de facto standard measure on anonymization quality
used in many previous studies. The error rate measures how effec-
tive the anonymized data sets are in query answering.

All our experiments were conducted on a PC with a Pentium P4
2.0 GHz CPU and 512 MB main memory, running Microsoft Win-
dows XP. All the algorithms were implemented by us in Microsoft
Visual C++ version 6.0.

5.2 Results on Real Data Set Adults
The Adults census data set from the UC Irvine machine learning

repository has become a de facto benchmark for k-anonymization.
The data set was configured as described in [4]. The salary class
attribute was dropped, and the tuples with missing values were re-
moved. The resulting data set contains 30, 162 tuples.

Since the MultiDim method does not handle hierarchies on cat-
egorical attributes but treats a categorical attribute as a discrete nu-
meric attribute, we configured the data set for MultiDim as it was
used in [9]. For the bottom-up method and the top-down method
proposed in this paper, we used age and education levels as numeric
data, and use the other attributes as categorical attributes. We used
the two hierarchies in Figure 6 on attributes work-class and marital-
status. On other categorical attributes, a simple two-level hierarchy
is applied: the values are the leaf nodes and the root is ALL (i.e.,
suppression). All weights were set to 1.

Figure 7 shows the certainty penalty of the anonymization of the
three methods with respect to different k values. As expected, since
the bottom-up method and the top-down method focus on the cer-
tainty penalty, but the MultiDim method does not, the anonymiza-
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Figure 6: The hierarchies on attributes work-class and marital-status.
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Figure 7: Certainty penalty on data set
Adults.
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Figure 8: Discernability penalty on data
set Adults.
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Figure 9: Query answering error rate on
data set Adults.

tion generated by the bottom-up method and the top-down method
has a clearly lower certainty penalty. The gap is stable, about
2× 104.

Figure 8 compares the discernability penalty of the anonymiza-
tion generated by the three methods with respect to different values
of k. Interestingly, although the bottom-up and the top-down meth-
ods do not explicitly focus on reducing the discernability penalty,
they outperform the MultiDim method. Please note that the dis-
cernability penalty in the figure is drawn in the logarithmic scale.
The results show that optimizing the utility and the reducing the
discernability are not conflicting with each other. In fact, the two
methods also try to keep the size of groups same when they reduce
the certainty penalty. Grouping tuples locally can bring us ben-
efit on reducing both the certainty penalty and the discernability
penalty.

Interestingly, the anonymized data sets generated by the bottom-
up method and the top-down method are comparable in both the
certainty penalty and the discernability. This is not unexpected
since the two methods greedily group tuples locally to achieve k-
anonymity.

To test the effectiveness of query answering using the anonymized
data, we generate workloads using SUM and COUNT aggregate queries,
respectively. Each workload has 1, 000 random queries. Each
COUNT query involves all the attributes, and each SUM query in-
volves all but the age attribute that is used to compute the sum. The
ranges of the attributes are selected randomly. For a categorical at-
tribute, a query carries either a random categorical value, or a set
of values that are summarized by an internal node in the hierarchy
as the range. This is consistent with the settings in [9].

Figure 9 shows the results on two workloads of aggregate func-
tions COUNT and SUM, respectively, with respect to different k val-
ues. Clearly, the bottom-up method and the top-down method out-
perform the MultiDim method substantially. The results can be ex-
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Figure 10: Runtime with respect to k on data set Adults.

plained in two aspects. First, the utility-driven anonymization put
tuples that are similar to each other into groups. Thus, the general-
ized groups often have small ranges, and can answer queries more
accurately. Second, our methods handle categorical attributes bet-
ter than the MultiDim method. The hierarchies are considered in
the anonymization. This contributes to the query answering quality
strongly.

Figure 10 shows the runtime of the three methods. As the trade-
off, the bottom-up and the top-down methods consumes more run-
time than the MultiDim method. The top-down method is about 5-6
times slower than MultiDim, and is much faster than the bottom-up
method. The runtime of the three methods is not sensitive to k. The
difference in the efficiency can be explained by their complexity.
While the MultiDim method has the complexity O(|T | log |T |), the
bottom-up and the top-down methods have complexity O(|T |2).

5.3 Results on Synthetic Data Sets
To test the performance of the three methods more thoroughly,
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Figure 11: Certainty penalty with respect
to k, on synthetic data sets with uniform
distribution (dimensionality = 4).
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Figure 12: Certainty penalty with respect
to k, on synthetic data sets with Gaussian
distribution (dimensionality = 4, σ = 1.0).
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Figure 13: Certainty penalty with respect
to σ, on synthetic data sets with Gaussian
distribution (dimensionality=4, k = 10).
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Figure 14: Certainty penalty with respect
to dimensionality, on synthetic data sets
with Gaussian distribution (σ = 1.0, k =
10).

2 5 10 25 50 100
10

4

10
5

10
6

10
7

k

D
is

ce
rn

ab
ili

ty
 P

en
al

ty

MultiDim
BottomUp
TopDown

Figure 15: Discernability penalty with re-
spect to k, on synthetic data sets with uni-
form distribution (dimensionality = 4).
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Figure 16: Discernability penalty with re-
spect to k, on synthetic data sets with
Gaussian distribution (dimensionality = 4,
σ = 1.0).

we generated synthetic data sets in two types of distributions: uni-
form distribution and Gaussian distribution. The dimensionality
and the number of tuples may vary according to the needs of exper-
iments. By default, a data set has 10, 000 tuples and each attribute
is in the domain of integer with range [1, 16]. Again, by default the
weights are set to 1.

5.3.1 Anonymization Quality
Figures 11 and 12 show the certainty penalty with respect to k

on the synthetic data sets with uniformly distribution and Gaussian
distribution, respectively. In the uniform distributed data, the Mul-
tiDim method and the top-down method are comparable, and the
top-down method is better when k is small. The bottom-up method
performs poorly. The reason is that with uniform distribution, the
kd-tree like construction in the MultiDim method can partition the
data set evenly into groups with hyper-rectangle bounding boxes
so that each group is balanced and achieves low penalty. The same
happens to the top-down method as well. In the bottom up method,
the groups formed by merging may be in irregular shape and thus
may lead to high certainty penalty.

In data sets with Gaussian distribution, both the top-down method
and the bottom-up method work better than the MultiDim method.
The advantage is clear. With bias data, local search and local re-
coding may have good chance to find local clusters that lead to low
certainty penalty.

It is interesting to test the certainty penalty with respect to the

degree of bias in data. Figure 13 shows the results. The top-down
method is consistently the best. When the data is severely biased,
the MultiDim method performs poorly. But when the data becomes
less biased, the MultiDim method catches up with and even outpe-
forms the bottom-up method, but is still worse than the top-down
method.

Figure 14 shows the certainty penalty with respect to various di-
mensionality. The top-down method and the bottom-up method
are comparable, and the top-down method is slightly better. The
MultiDim method has a high certainty penalty in high dimensional
data. Please note that, as the dimensionality increases, the certainty
penalty generally increases accordingly since each attribute con-
tributes to the certainty penalty. The bottom-up and the top-down
methods try to reduce the penalty in the anonymization procedure
and thus may achieve good results.

We also test the quality of the anonymization using the discern-
ability penalty measure. Figures 15, 16, 17, and 18 show the results
on the cases in Figures 11, 12, 13, and 14, respectively. The results
using the discernability penalty measure are consistent with the re-
sults reported in [9].

From the results, we can observe that the bottom-up method and
the top-down method have similar performance, and achieve less
discernability penalty than the MultiDim method in all cases. This
is consistent with the results on the real Adults data set.

From this set of experiments, we conclude that the bottom-up
and the top-down methods often have similar performance in anonymiza-
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Figure 17: Discernability penalty with re-
spect to σ, on synthetic data sets with
Gaussian distribution (dimensionality=4,
k = 10).
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Figure 18: Discernability penalty with re-
spect to dimensionality, on synthetic data
sets with Gaussian distribution (σ = 1.0,
k = 10).
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Figure 19: Utility in query answering, on
synthetic data sets with uniform distribu-
tion (dimensionality=4, k = 10).
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method, on real data set Adults, and syn-
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distribution (dimensionality=4).

tion quality, measured by both the certainty penalty and the dis-
cernability. The anonymization quality using those two methods
are often better than the MultiDim method.

5.3.2 Utility and Query Answering
To test the utility in query answering, we use a uniformly dis-

tributed data set with 4 attributes, and set k = 10. We assign
weights 8, 4, 2, and 1 to attributes A1, A2, A3, and A4, respec-
tively. That is, the information loss in attribute A1 is strongly un-
desirable.

We generate 4 groups of random queries on attribute combina-
tions A1, A1A2, A1A2A3, and A1A2A3A4, respectively. The av-
erage error rates of the queries in each group is shown in Figure 19.
For comparison, we also conduct the same queries on anonymiza-
tion that do not consider the weights.

As can be seen, the effect of utility-based anonymization is sig-
nificant. The anonymization using the weighted top-down or bottom-
up methods answers the queries on A1, A1A2, and A1A2A3 more
accurately than the non-weighted methods. When all attributes are
involved in a query, the weighted methods may lose some accuracy
as the trade-off.

We also test the average error rates using the anonymized data
to answer aggregate queries. Figure 20 shows the results. In this

experiment, we assign the default weight 1 to every attribute, and
test two aggregate functions SUM and COUNT. The average error
rate is computed from 1, 000 random queries. The methodology is
the same as the experiment reported in Figure 9 and the experiments
reported in [9].

The results show that both the bottom-up and the top-down meth-
ods achieve lower error rate than the MultiDim method when k is
not large, since local recoding often groups tuples with small cer-
tainty penalty. When k is large, the top-down method has the best
performance, and is clearly better than the other two methods.

5.3.3 Efficiency and Scalability
The advantages of the bottom-up and the top-down methods in

anonymization quality do not come for free. The trade-off is the
longer computation time. Figure 21 shows the results on scalability.
The complexity of the MultiDim method is O(|T | log |T |), lower
than that of the bottom-up and the top-down methods. Thus, the
MultiDim method is more scalable. However, since anonymiza-
tion is typically an offline, one-time task, quality can be a more
important concern than the runtime. On the other hand, the dif-
ference between the top-down method and the MultiDim method
is not dramatic. In our experiments, even when the data set scales
up to 100, 000 tuples, the runtime of the top-down approach is just



less than 6 times slower than that of the MultiDim method.
The top-down method is substantially faster than the bottom-up

method. As analyzed in Section 4, splitting in the top-down method
is much faster than merging in the bottom-up method.

A critical step in the top-down method is to choose two seed
tuples. We used a heuristic method as described in Section 4. Fig-
ure 22 shows the effectiveness of the heuristic. We used a thorough
method to compute the pair of tuples of the largest certainty penalty.
Then, we used the heuristic method to compute seed tuples that are
far away, and compare their certainty penalty with the maximum.
As shown, with a small number of iterations, our heuristic gives
very good approximation to the maximum. Thus, in our implemen-
tation, we conduct 3 iterations to obtain the seed tuples.

Summary
The extensive experiments using both real data sets and synthetic
data sets show that, in terms of utility and discernability, the bottom-
up method and the top-down method developed in this paper often
achieve better anonymization in quality than the MultiDim method,
the state-of-the-art approach. The top-down method is better than
the bottom-up method.

The trad-off of high anonymization quality is the runtime. The
MultiDim method is more efficient. However, the runtime of the
top-down method is not far away from that of the MultiDim method
in practice. Moreover, for anonymization, the computation time is
often a secondary consideration yielding to the quality.

6. CONCLUSIONS
As privacy becomes a more and more serious concern in applica-

tions involving microdata, good anonymization is important. In this
paper, we showed that global recoding, which is often used in pre-
vious methods, may not achieve effective anonymization in terms
of discernability and query answering accuracy. Moreover, the util-
ity of attributes has not been considered in the previous methods.
Consequently, we study the problem of utility-based anonymiza-
tion. A simple framework was given to specify utility of attributes,
and two simple yet efficient heuristic local recoding methods for
utility-based anonymization were developed. Our extensive perfor-
mance study using both real data sets and synthetic data sets shows
that our methods outperform the state-of-the-art multidimensional
global recoding methods in both discernability and query answer-
ing accuracy. Furthermore, our utility-based method can boost the
quality of analysis using the anonymized data.
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