k-Balanced Sorting and Skew Join in MPIl and MapReduce

Silu Huang, Ada Wai-Chee Fu

Department of Computer Science and Engineering, Chineseetity of Hong Kong
sl huang, adaf u@se. cuhk. edu. hk

Abstract— A. Terasort - a randomized algorithm

We consider algorithms for sorting and skew equi-join oper- . . .
ations for computer clusters. The proposed algorithms aclgve Terasort is a parallel algorithm proposed to sort data in the

the best known theoretical workload balancing guarantee, ad ~ Siz€ range of terabytes [9]. There are 3 rounds in Terashyrt: (
exhibit close to optimal balancing in our experiments. Our a random sample set is collected from the input. (2) From the

empirical studies also show that the proposed sorting algéthm sample set, range boundaries are determined émntiguous

is up to 30% faster than the state-of-the-art algorithm. but disjoint ranges that partition the data according tosibe
key values. (3) The objects that fall into a particular range
|. INTRODUCTION sent to a corresponding machine. Each machivte, will then

A Computer cluster consists of a set of computers or nodey't the PbiGCt_S received;, so that combini_ng the results of
connected to each other by a high speed local area netwBlkmachines gives a sorted result of the given dataset.
(LAN). Cluster computing has emerged as a commonly useg/\n interesting and useful result is derived in [11] showing

infra-structure for efficient big data computation becaoge that if the sampling probability is set tol/m In(nt), then
the elasticity of the cluster size and low cost CPUSs. with high probability, the number of objects distributeceiach

achine isO(m). From their proof of this result, we can

ﬁrive that Terasort is 32-balanced with high probabilliy.

how that the algorithm ig-balanced for a smak with high

obability, we would bound the load distributide;|, by km

r a smallk, with high probability. To this end, we first make
me changes to the above in the randomization step (Round
We replace the step of sampling each object by Algorithm
elow. AlgorithmsS always returns exactljin(nt)] objects.

We consider the design of parallel algorithms for the bas
data management problems of sorting and join operation
two tables with skew key distributions, with the models of MP®
and MapReduce for computer clusters. One important prpp(’eflr
of the algorithms is the balancing of the workload among t 8
machines in the cluster. We deal with algorithms where thy
runtime for each machine depends in the same way on
sizes of its input or output, which are assumed to be big. ,Th&
we define the workload of a machine as the amount of inptigorithm S [6], [7]: Given objectsoy, ..., o,,, initially no
to or the output from the machine, whichever is bigger. Givasbject is selected. Next consider objects one by one fspm
t machines, we bound the workload; on each machine to to o,,, when considering objeet,, let j be number of objects
within £ times that of the bigger of the average input andiready selected, select objegtwith probability ([In(nt)] —
output sizes. D)/ (m—k+1).

From Theorem 1 below, Terasort with Algorith$nis close

Wi < k (max(Nip, Nout) /1) (1) to 5-balanced with high probability.

where N;, is the input size, andV,,; is the output size. For Theorem 1. Givenn > 4t as input size for Terasort with
our algorithms, the running time of each machine dependfgorithms, |S;| < 5m + 1 with probability at leastl — 1/n.
mainly on the workload. We say that the algorithm ks
balanced. We propose sorting and skew join algorithms that
are 2-balanced. Our experiments show that they achieve clgs syms sorting - a deterministic algorithm
to perfect workload distribution in all our test cases.

Proofs for the theorems of this paper can be found in [5].

Our proposed parallel algorithm is called SMMS (Sort-
Map-Merge Sorting). The idea is that if we evenly divide
the data into subsets;, and sort eachS; first, we may

We are given a sefS of n objects, where each objectderive better range boundaries than random sampling. We hav
is a real number. Our goal is to sort the objects with implemented the algorithm on MPI. Note that if implemented
a computer cluster. For simplicity the objects themselves Hadoop, the sorting by Hadoop can be turned off in the last
are the sort keys. Let there hemachines in the cluster, merging step. In the first round, each machine samples
namely, M1, Ma, ..., M;. For simplicity we assume that objects as follows. Then = n/t objectsS, in each machine
is a multiple of¢, and letm = n/t. This assumption can be M; are sorted and divided into equi-depth (equi-frequency)
easily removed by padding some dummy objectsStoWe intervals. Let the objects received byl; in sorted order be
assume that initially the: objects are evenly distributed too;, o, ..., 0. M; pickss+1 sample objects; o, Ai 1, -, Ais.
the t machines, so that each machine is assignedbjects. where), o = 01, and)\, ; is the [j x m/s]-th smallest object

Il. SORTING

SMMS Sorting - a deterministic algorithm

reachesn, in which case, a new boundabjk] is determined.
The value ofcfd is for the combined frequency distribution

Round 1: S is evenly distributed among machines. Each OVer the value domain. An example is shown in Figure 2. Here

machineM; handle a subsei; C S, where|S;| = n/t = m.
On eachM;, sort subsef; locally and pick\; o, Ai 1, ...\,

we have 2 machines, given 40 objects, each machine samples
3 objects, namely, (2,3,4) and (1,6,7), respectively, fibmm

and send to maching;, where), is the smallest objectsin distributed objects. Algorithm 1 processes thealues in the
S; and forj > 0, \;; is the [j * m/s]-th smallest object in order of 1, 2, 3, 4, 6, 7. When 4 is processed, ¢he value

Si.

Round 2: M, receives{); ;,1 <i<1t,0<j < s}.
M selects global boundary numbeéxsb,...b;. Each interval

[bi,bi+1) is called abucket. The selection is obtained by

Algorithm 1. by, by, ..., b, are sent to all machines.

Round 3: Every M; sends the objects ifby_1, bx) from its
local storage toMy, for eachl < k < ¢. Every M; merges
objects received in sorted order.

Fig. 1. SMMS sorting Algorithm

in S;. ThUS,/\iJ = Orm/s]s)\i,2= O[2m/s]y ++ /\i78 = 0. S+1
is the sampling size, and is a multiple oft. Let s = rt,

wherer > 1 is a small integer. The sampled objects are segt

exceedsm = 20, the value 3.5 is computed as the bucket
boundary at Line 9.

Algorithm 1: Computing Bucket Boundaries

Input : XA 04,5, 1<t <t,0<5<s
Output : Global boundarie$[k], 0 < k <t

1 Initialize: Create an empty priority queu@; V1 < < ¢:
past fd[i] = 0; next[i] = 0; push (X\; 0,1, i,0) iNto priority
queueq; cfd = 0;pre = 0; cur = 0; k = 0; flag = 0;

2 while Q # 0 do

3 (A, 4, uy <+ TopAndPog@); /X andp fromM; */

4 if flag == 0 then

5 | o[k] = Ak 4+, flag = 1; *first boundary*/
6 if (\—pre)xcfd+ cur < m then
7 | cur+ = (A —pre) x cfd; [*keep count*/

else
to machineM;. 9 blk] = (m — cur)/cfd+pre, k++; I* new bucket */
In Round 2,M; collects all the sample objects from everyo cur = (A —pre) x cfd + cur —m; [* keep count
for new bucket */

machine and then computes+ 1 global key boundaries
bo, b1, ..., b, so that each intervalb;,b;,;) forms a bucket **
Bi+1 and the intervals partition the data set. Each data objeigzts
belongs to one bucket. The algorithm to compute the bound-
aries will be described in the next subsection. The bouadari;1
are sent to all machines. In Round 3, each machine distsbute L

pre = X\, [*update previous boundary*/
cfd=cfd — pastfd[i] + u; I* update cfd */
pastfd[i] = p; [*p will be obsolete for M;*/
if Inext[i] then

|_ pusr()\i,necvt[i]y iy Mz’,nezt[i]>into Q7 TLEIEt[Z] + +;

the sorted dat#; according to the bucket boundaries, so thag b« = A return b[k],0 < k < t;

data belonging to bucket; go to machineM;. M; merges

the data coming from other machines to form the sorted list fo
buckets;. The sorted lists from all machines form the sorted

result set. The pseudocode for SMMS is given in Figure 1. 1 boundary
1) Algorithm 1: computing bucket boundariegdgorithm 120 }
1 is used to compute the global boundary valuekyof.., b; in L ;] M— E—— Aremromnoeeenaees
Round 2 of the SMMS Algorithm. The input to this algorithm }
consists of the local boundary valugs; from each machine 2 A -
M;. In this computation, we apply linear interpolation for 1 2 3 4 5 6 7

each interval\; j, \; j+1) on eachM,. Since there aren/s

objects in the interval by construction, we compute the mei§- 2. Example of Combined Frequency Distribution (cfd):= 40, ¢ = 2,

valuep; ; = (m/s)/(Xij+1 — Ai ;) for Algorithm 1. We also
setu;, s =0,1 <1<t
Each intervallb;,b;+1), 0 < i < t is called abucket. We

s = 2, m = 20, samples fromM; = (2,3,4), samples frori\ 12 = (1,6,7)

Each while loop handles one sampled valjg There are

use the termbucket densityfor the number of objects in a at mostt elements iny, hence each while loop cost¥log t)

bucket, denoted byD[by,br+1), 0 < k < t. Note thatby
is not necessarily an input object, whete< k£ < ¢. The

time. The total time complexity i©(st log t) because of(s+
1) rounds of the while loop.

selection ensures that the estimated bucket density based oWe should point out that the complexity of Algorithm 1

i, 1 <i<t1<j<s,for Dby,brt+1) is equal tom,

is insignificant compared to the problem size. Utilizatidn o

wherel < k < t. A priority queue(is maintained for storing computer cluster is justified only when the problem size g bi
triplets of the form(), ¢,), which are sorted by the first valueand from previous works such as [11], the size is in terms of
A as the key. In the triplet)\, ¢, 1), A and . correspond to a billions of records and is 20 GB or more. Thus, the value of

certain pair of §; ;, u; ;) values fromM;. Variablecur keeps

t is very small in comparison ta. In our experiments, the

count for the estimated density of the current bucket until iuntime for Round 2, including Algorithm 1, is found to be

negligible for all test cases. A. StatJoin - A Deterministic Algorithm
2) Analysis: In the first round of SMMS, all machines aré |, i section we introduce a deterministic algorithm

assigned equal workload. In Round 2, the workload is th§at56in for handling the skew join problem The major idea
t(s + 1) samples which is small compared to the input sizg,. gtatjoin is the partitioning of data based siatistical
n. Hence, we need only analyze the workload distribution @, mation.

Round 3. We aim for a bound on the maximum workload of

) 1) Statistics Collection:In Algorithm StatJoin, we first
a machine when compared to the even workload.

collect statistics from the two tablésandT'. For this purpose,
Theorem 2. At Round 3 of SMMS sorting, the workload oWe apply a parallel sorting algorithm such as Terasort or
each machine is bounded 6y + 2/ + t>/n)m. SMMS for each ofS andT, allowing for repeated keys. After
_ sorting, eachM; contains sorted portions or buckeg®s and
For example, ifn > 25M, v = 2, andt = 50, then the pT of ¢ and T, respectively. All occurrences of the same
workload for each machine is bounded abovesbgm, and join key will be collected at one single machine. Then each
it is 2-balanced. Ifn. > 75M, r = 6, andt = 50, then this n4chine calculates the sizes of the join results for differe
bound becomes- 1.3m, and SMMS is 1.3-balanced. join keys, and the total join result size that will be genedat
Two k-balanced algorithms are comparable when they hajgm PS5 andP?. The result sizes are measured in number of
similar operations at each machine. SMMS and Terasort bQUbles. Based on such statistics, a task distribution dhgor
involve only sorting and distribution of data as the majepst g applied on all the join tasks.
In comparison, Terasort has up to 60% imbalance empirically | ot 177 pe the total join result size. A join result of a key
which is higher than the above bound for SMMS. with a size greater thamV/t is called abig join result,
The global boundaries are related to quantiles of an ordergflerwise, it is called amall join result. Note that the biggest
sequence of data values. Taegquantile is the element with gjze of a small join result i§¥/t. We decide on the task
rank|[¢N |, whereN is the given number of values [1], [4]. We gjstribution by first considering the big join results, faded
adopt a two phase approach as in [1]. However, our problgs the consideration of the small join results.
is for boundaries instead of ranks, which allows us to apply ajthough the statistics collection requires a sorting af th

linear interpolation in the computation. input datasets, this overhead is insignificant when compare
to the overall runtime, because for skew join the input size i
Il SKEW JOIN small when compared to the result size.

In the recent development of the Apache Pig system on top?) Big Join Results:We consdier the big join results one
of MapReduce, it has been noted that data skew in join is?h @ time, in an arbitrary order. L& be a big join result
significant and challenging problem [3]. In this section, w&ith @ size of M x N, where(j —)W/t < MN < jW/t.
focus on the problem of join when data is skew. We apply aresult-to-machinemapping method foB with the

We consider the problem of skew join for two tablgsand number of machines set {o Without loss of generality, let the
T with an equality join condition of5.p — T'.p for a certain Machines assigned b, ..., M;. The result of the mapping
join key p. As in [8], we model the join result by means of 45 that each machinev(; will be mapped to a rectangular
S| % |T| join-matrix T as shown in Figure 3(b). In this matrix,[€9i0n in the join resuli. Each rectangular region is defined
S andT' are sorted by the join key into ordered lists = by a quadruplel;, i, I, h), wherel;, h; are two tuple id's in

. tableS, wherel® < h, andly, h; are two tuple id’s in tablg’,
51,52, ..., 8g), andT" = ty,ta, ..., ;7). In Figure 3(b), the key hereli < hi. A tuple in tableS with id in [1i. hil i ‘aned
values forsy, ..., s|s| areb,d,d,d,d, f, correspondingly. The wherel; < h;. Atuple in tableS with id in [I,, h] is assigne
matrix entryI'(s, j) is true (shaded) iffs;.p = ¢;.p. The join

to M,. Similarly, a tuple inT" with id in [I{, hi] is assigned
result for a certain join key form a shaded rectangular regionto.Mi' For ex_ample, n Figure 3 (b)’. suppose we divide the
:) . . : join result horizontally into 2 equal sized rectangles. The
in T, we call this region thgoin result for k, or simply rectangle is defined by2, 3,2,4). Suppose this rectangle is
result(k). For example, in Figure 3(b), the join result for key 9)2, 2 %) SUPP 9

d, denoted byresult(d), is the shaded rectangle of size 3. assigned to mach!n& lo. Thgn tuples 2 and 3 df, and tuples
4) . . 2,3, and 4 ofT" will be assigned toM,.
Supposek is a join key, we say that thsize of the join

result for k is M x N if M and N are the number of tuples We dI.V'de the MN rgsult tuples among maphmes by
with key k from S andT, respectively. For example, in I:igurepamtlonmg the longer side of the rectangkeinto j intervals

3(b), the join result for keyl has sizel x 3, which is the cross as evenly as possible. Without loss of generality, assume

product of tuple to 5 from S and2 to 4 from 7. Next we .M = N. Then M IS d|V|d_ed Into j _mtervals. Each of th@_
intervals and the side of siZ€ of regionB form a rectangle in

define the skew factor to indicate how large the join resu) - S
N) . o . HenceB is partitioned intgj such rectangles. We call these
size is compared with the total size §fand7’, where size is . .
rectangles themapping rectangles There are two possible
measured by the number of tuples. .)
cases for the size of/ N:
Definition 1 (JOiI”I Skew FaCtOI‘U). The skew factor of the 1) MN = jW/t In this case, thq mapp|ng rectang|es
join, S x T, of two tablesS and 7' is given byo if | are of the same sizé}//t. The output of each mapping
T|=o(|S]+[T)). rectangle are assigned to one jofnachines that have

Sk

‘ for our workload balancing guarantee. The minimization of
123456 a|T| + b|S| can lead to some minor improvement for load

@ @ Interval . ; balancing related to the join input size to each reducer. The
1 -
243

=l
—

(7]l
w

matrix. For matrix A, we call the first dimensior§ and
the second dimensiod. Each A[i, j] is assigned a unique
machine. We say thati[i, j] lies on interval i of S and
interval j of T.

reason for this choice will be explained later. With the esu
of ¢ and b, we form aa x b matrix A called themachine
Interval 24
2 1<5
Interval 1 Interval 2

-~ 0 0O O O T

adddeg

@ (b) Example 1. Fig.3(a) shows the machine matrix given 4
Fig. 3. (a) machine matrixd for 4 machines (= 4), a = b = 2. (b) join Machines. The two dimensions 6f and 7' each consists
matrix I and randomized tuple-to-interval mapping of 2 intervals, i.e.,a = b = 2. MachinesM;, My, Ms,
and M, are assigned toA[1, 1], A[1,2], A[2,1], and A[2, 2],
not been assigned any big join result so far. We send trespectively.
N tuples on thel” side of B and tuples along interval
i, 1 <i<j, ontheS side of B, to M.

2) MN < jW/t. Since we partition the longer side of
B (with M tuples) as even as possible, each interv
has either[M/j] or | M/j] tuples. Thus, the smallest
mapping rectangle?,,;,, has a size smaller thai/t.

2) Tuple-to-Interval Mapping:We assign tuples to ma-
chines by a randomized algorithm. For each tupleSiwe
randomly select an integérin 1,...,a and map the tuple to

terval i of S in the machine matrix4d. For each tuple in
T, We randomly select an integgrin 1,...,b and map the

. : tuple to intervalj of 7 in A. Then each tuple is assigned
For each of thej — 1 mapping rectangles other thanto the machines as follows: if a8 tuple x is mapped to

Romin, the corresponding tuplles are processgd as ilterval i of S in matrix A, thenz is sent to each of thé
Case (1) above, so that their output are assigned r%o

. : L ..~ machines assigned i, 1], A[¢,2], ..., A[i, b]. If a T tupley
J—1 mac_hln(_es. FOfmin, I S treated asa S”_‘a” 10N 4s assigned to interval of T in A, theny is sent to each of
result, WhICh is to be process_ed as_d_escnbed in the n?ﬁ% o machines assigned ta[1,], A[2,], ..., Ala, j]. Each
subsecﬂo_n. We calRmin @ reS|d_ua! J_O'n result. machine computes the cross-product of all theiples andl’"
~3) Small Join ResultsiAfter the big join results are as-ypjes that it has received for a single join key. Hence, diie j
signed to the machines, we deal with tesult-to-machine reqyit for tuplesz andy, if any, will be uniquely generated
mapping for the small join results. The small join resuItEy the machine assigned {3, j]
include those residual join results. We consider small join
results for different join keys one by one, each time we assidfxample 2. : In Figure 3(b), we show the join matrix for the

the next join result to the machine with a smallest assigné&bles.S andT'. Each table contains 6 tuples. We show that

workload. tuples 2,3,4,5 ofS are randomly assigned interval numbers
The work assignment resembles the greedy bin-packihg2,1. Then the second tuplewill be mapped to the first
algorithm and hence we have the following result. interval onS' in matrix A in Figure 3(a), and it will be sent to

o . . machinesM; and M. The join result in the join matrix for
Theorem 3. Let the total join results size HB&". With StatJoin, ha garker shaded area will be generated by machire.

the total size of the join results generated by any machine is
at most2W/t. From the above tuple-to-interval mapping, each tuple&'in
))) is assigned td machines, and each tuplenis assigned ta

B. RandJoin- A Randomized Algorithm machines. By selecting and b that minimizea|T| + b|S| we

In this subsection, we introduce our randomized algorithrminimize the total input size to the machines in the number
RandJoin, for handling skew join. In this algorithm we assigof tuples.
tuples to machines in a randomized approach. A randomizedrhe following theorem establishes that RandJoin is 2-
algorithm is proposed in [8] which maps square regions of thgianced with high probability.
join result to machines. However, since the join result ma

not be a perfect square, the mapping does not ensure eqﬂ}]qorem 4. If the join results for each join key is either an

probabilities of assignments, and results in a maximum worRMPLY Set or a set with sizé/ x NV where M /a > 300 and
load imbalance factor of 4. Here we propose another mappiftg? = 300, then the probability that the workload of any
technique where each tuple has equal expected probaﬂ)iliﬁ%aCh'”e is I%ss than twice the even workload is more than
for the assignments. Our method is based on a concepthél 1.2 107"

machine matrix.

1) Machine MatrixA: Let the number of machines he
we determine two integers andb such that firstlya x b = ¢ Our experiments for the parallel algorithms have been
and secondly, among all b satisfyinga x b = t, a|T'|+b|S|is conducted on a 16 machine cluster with a master machine
minimized. We shall see thatx b = ¢ is a sufficient condition and 15 slave machines. The master is a Dell R720 Server with

IV. EXPERIMENTAL RESULTS

workload imbalance total running time(sec) workload imbalance total running time(sec)
2 1500 2 3500,

> TeraSort > TeraSort > TeraSort > TeraSort
1.8 SMMS 1250 SMMS 18 SMMS 3000 SMMS
1.5/‘—"_—“\ 1000 s 2500

2000
750

1.2 1.2 1500
z 500 X 1000
0.8 250 0.8 500 %
1530 60 120 180 15 30 60 120 1530 60 120 180 15 30 60 120
number of processes number of processes number of processes number of processes
(a) workload (input size) (b) run time (a) workload (input size) (b) run time (sec)

Fig. 5. Comparing SMMS and Terasort for Random Dataset wathillion
objects (199.3 GB)

workload imbalance total running time(sec)

2
Dual 6-core Xeon E2620 2.0GHz, 192GB RAM and 4x 3TB 13 so
SAS Hard Disk. Each slave machine is a Dell R620 Server
Dual 6-core Xeon E2620 2.0GHz, with 48GB RAM and 2x
300GB SAS Hard Disk. All machines are connected by a 1GB 1‘i 200
ethernet switch. We have installed Hadoop (version 1.2al) ¢ 4 100
the cluster for MapReduce algorithms. There are 6x2x15 1s
180 cores in the slaves, we can activate up to 180 workers In
parallel for Hadoop mappers or reducers.

We have implemented the sorting algorithms (SMMS and
Terasort) based on MPI, and the join algorithms RandJoin afg. 6. Sorting results for Random Datasets of differenesimith 120
StatJoin based on Hadoop MapReduce. We have set the [PFRSesses
dfs.replication factor to 3. The fs.block.size is set to @M
Other Hadoop parameters are set to the default values. B%9 GB, 99.8 GB and 199.3 GB, respectively. The key of each
computer cluster consists of 15 worker machines each willata object in a dataset is a randomly generated number in the
8 cores that share 2 hard disks. We shall call the paraltainge of[1,12 x 10°]. We generate unique objects in each
computational unitsprocessesinstead of machinesin our machine.
experiments. The results of workload imbalance are shown in Figures

We evaluate our algorithms by two measurements: the wodka), 5(a), and 6(a). In all cases, SMMS distributes the
load distribution and the runtime. The workload is measuredrkload very evenly and the imbalance is close to the ogtima
by the input size for sorting and by the result size for joinzalue of 1. TeraSort has comparably much larger workload
The sizes are given in the number of tuples unless otherwisgbalance, in most cases the maximum workload of a process
specified. We examine theorkload imbalance which is is above 1.5 of the optimal load. Similar results are rembrte
given by the ratio of the maximum workload on a machini [11]. The imbalance affects the performance in runtime.
versus the even workload. Thentime is given by the longest However, the effect is mitigated by the fact that we have a

Fig. 4. Sorting for real dataset LIDAR, workload imbalanceraximum
workload / optimal workload

5.4 9 . 5.4 9
dataset size(billion) dataset size(billion)

(a) workload (input size) (b) run time (sec)

runtime taken by any process. star cluster with a bottleneck at the master node, as shown in
_ Figures 4(b), 5(b), and 6(b). The improvement in runtime by
A. Results for Sorting SMMS is expected to be more significant in a decentralized

We evaluate the sorting algorithms of SMMS and Terasd#€tting. The figures also show that SMMS achieves almost
on a real dataset LIDAR and also on a synthetic dataset. Higear speedup.
SMMS, we set the value ofto 1 so that each process sample Results on Skew Join
t objects. We vary the number of processes from 15 to 180,
and measure both the workload distribution and the runtimeFor the Skew Join experiments the dataset consists of
performance. two input tablesS and 7. We adopt two different methods
Real Data We use the real dataset LIDAROr experiments t0 form a dataset with skew join keys. The first method
on sorting, which has been used for the sorting experimantd$ to generate tables with attributes drawn from the Zipf
[11]. LIDAR contains 8.27 billion records, each of which iglistribution, maintaining the same distribution for botibles
a 3D point representing a location in North Carolina. We so$f that each key has the same frequency in both of the input
the records by the first dimension. The dataset size is 123d@bles. We vary the Zipf skew parametebetween O (skew)
The input data is distributed sequentially to the machines. and 1 (uniform), i.e.Z(r) oc 1/r(=%), wherer is a frequency
Synthetic Data: We have generated 4 sets of random datt&nk, Z(r) is the frequency of the item with rank
with 1.8 billion objects, 5.4 billion objects, 9 billion abjts ~ The second kind of skew data is generated as described in
and 18 billion objects. The sizes of these datasets are 18,9 ¢2]. For a table withn tuples, the join key has a domain of
[n,2n). The special join key: appears in a fixed number of
IDownloadable from http:/Avww.ncfloodmaps.com tuples, while the remaining tuples are randomly assigned a

workload imbalance

workload imbalance
1.1

1.05

‘/«f_x——)e/%

0.95

* RandJoin
StatJoin

0.9

0.95|

> RandJoin
StatJoin

3 30 60 12
number of processes

(@6 =0.7,]S| = |T|=5M
output size = 147GB

180

(29.4x10° tuples,o=2940)

Fig. 7. Workload distribution of RandJoin and StatJoin fgufdistributions:

(6 = 1 : uniform key distribution).

total running time(sec)

0.9

3 30 60 12
number of processes

(b) 6 = 0.3, |S| = |T|=1.5M
output size = 59GB
(11.8x10° tuples,oc=3900)

180

total running time(sec)

5000

4000

3000

2000

1000
500

5000 > 0=1
6=0.7
* 06=0.3

-+ 6=0

4000

3000

2000

1000

S
500 o~

—
o3 g

7 15 30
number of processes

(a) RandJoin

Fig. 8.

workload imbalance

7 15 30
number of processes

(b) StatJoin

Running time for Zipf skew datasets (in sec)

workload imbalance

1.2

le—x/"\)/z

¢ RandJoin
0.9 StatJoin

O.u3

30 60 120 180
number of processes

(@) M = 10°, N =2 x 10*

1
¢ RandJoin
0.9 StatJoin

0.8

3 30 60 120
number of processes

(b) M =2 x 10° N = 10

180

Fig. 9. Workload distribution for scalar skew data.

1) Runtime AnalysisThe total runtimes for Zipf skew data
are shown in Figure 8. The results for scalar skew data are
similar. It can be seen that there is almost linear speedup up
to 15 processes. due to the highly even workload distributio
The speedup effect beyond 15 processes is discounted by the
overhead in the file replication of Hadoop HDFS. The file
replication factor is 3, hence, with 34 hard disks, theredsdy
speedup effects with up to 15 processes.

2) Workload Imbalance:The results of workload distri-
bution are shown in Figures 7 and 9. For the scalar skew
dataset, RandJoin did not distribute the workload as evenly
when the number of processors is large, this is because the
values of M /a and N /b are too small to satisfy the condition
in Theorem 4. StatJoin achieves near optimal results in all
cases.

V. CONCLUSION

We study the problems of sorting and skew join in a com-
puter cluster environment. We propose algorithms thatesehi
the best known theoretical guarantees on even workload dis-
tribution. Extensive empirical study shows that our satin
algorithm performs better than the state-of-the-art megtbb
TeraSort. All our algorithms achieve near optimal workload
distribution in all test cases.

ACKNOWEDGEMENTS

This research was supported by GRF CUHK412313 and
Direct grant 2050497. The authors would like to thank the
reviewers for helpful comments, James Cheng for the use of
the computer cluster, Yanyan Xu, Yi Lu, Wenging Lin and
Yingyi Bu for sharing their experiences with MPI and Hadoop,
the authors of [11] for their source code and a pointer to a
dataset, and the authors of [8] for explaining their soutmec

REFERENCES

join key from [n,2n). The output tuple size is 95 bytes. The [
skew keyky = n is generated in both tablesand7', and it [2]
occursM times inS and N times in7T'. By adjustingM and
N we can control the expected output join sizes. This kind o?]
test data is called “scalar skew” in [12] and is also used @& th
study in [10].]
Zipf distributed dataset: We aim to compare the effect
of skewness on similar join output size. However, Zipf dis-5]
tributions would vary the output size for the same input .size[G]
Therefore we vary the input table sizes accordingly. Fathgw
the design of [8] for skew key distribution, each tuple ciméa [7]
a 4 byte join key with a domain dfi000, 1999).]
Scalar skew dataset We tested on two sets of scalar skew
data. As in [2], we fix an output size and vary the values of9]
M and N to examine the effect of different key skewness iELO]
the two given tables. For the first dataset, we &&t= 10°,
and N = 2 x 10%. For the second set, we s&f = 2 x 10°
and N = 10*. The output size of the join of andT for both
datasets is 190GB. In both dataset$, = |T'| = 1.5M, and
the skew factow is 600.

[11]

[12]

K. Alsabti, S. Ranka, and V. Singh. A one-pass algorittondccurately
estimating quantiles for disk-resident data.MhDB, 1997.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Sésh&ractical
skew handling in parallel joins. INLDB, 1992.

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Mamamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Bgldi high-
level dataflow system on top of map-reduce: The pig expegiena
VLDB, 2009.

M. Greenwald and S. Khanna. Space-efficient online cdatfmn of
quantile summaries. I8IGMOD, 2001.

S. Huang and A. W.-C. Fu. (a, k)-minimal sorting and skem jin mpi
and mapreduce. I€0RR (arXiv) 2014.

T. Jones. A note on sampling a tape fil€ommun. ACM5(6):343,
1962.

D. E. Knuth. The Art of Computer Programming, Volume 2 Seminumer-

ical Algorithms 3rd Ed.Addison Wesley, 1997.

A. Okcan and M. Riedewaid. Processing theta-joins usimapreduce.
In SIGMOD, 2011.

0. O’'Malley. Terabyte sort on apache hadoop. Technical Report,
Yahog 2008.

E. Omiecinski. Performance analysis of a local balagchash-join
algorithm for a shared memory multiprocessor.\MbhDB, 1991.

Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algoritsm In
SIGMOD 2013.

C. Walton, A. Dale, and R. Jenevein. A taxonomy and pemnfmce
model of data skew effects in parallel joins. \fLDB, 1991.

