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Abstract—Graph keyword search is the process of extracting
small subgraphs that contain a set of query keywords from a
graph. This problem is challenging because there are many
constraints, including distance constraint, keyword constraint,
search time constraint, index size constraint, and memory
constraint, while the size of data is inflating at a very
high speed nowadays. Existing greedy algorithms guarantee
good performance by sacrificing the accuracy to generate
approximate answers, and exact algorithms promise exact
answers but require a high memory consumption for loading
indices and advanced knowledge about the maximum distance
constraint. For big data applications, existing techniques are
inefficient and impractical due to huge memory consumption
and varied distance constraint. We propose a new keyword
search algorithm that finds exact answers with low memory
consumption and without advanced knowledge of maximum
distance constraint. This algorithm builds a compact index
structure offline based on a recent labeling index for shortest
path queries. At the query time, it finds the answer efficiently
by examining a small portion of the index related to a query.
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I. INTRODUCTION

Graph keyword search finds a substructure from a graph,

which could be modeled from relational databases [4],

[11], XML documents [3], [5], [17], web pages [13], and

social networks [7], [10], to cover a set of input keywords.

Each node of the graph, annotated with some attributes or

keywords, represents a point of interest, an XML document,

a web page, or a participant of social networks. Edges

in such graphs could represent foreign key relationships,

IDREF/ID, hyper-links, and friendships or other routes.

A top-k graph keyword search is about retrieving k sets

of closely connected nodes, where each set collectively

covers some specific keywords, i.e., keyword constraint, by

nodes within a maximum distance, i.e., distance constraint,

specified in the query. For example, an answer set could be

a set of related papers in a citation network that cover a

specified set of topics, a set of well-connected experts in a

social network that cover a set of skills, and a set of nearby

point-of-interests that cover several themes. Notice that this

type of search identifies query keywords, not query nodes,

thus, should not be confused with nearest neighbor searches

where some query nodes are specified, such as [15].

As a concrete example, graph keyword search can be

applied to construct queries for the RDF (Resource Descrip-

tion Framework) data [9]. The basic unit of RDF data is a

tuple consisting of a subject, a predicate and an object. The

predicate defines the relationship between the subject and the

object. Constructing semantic queries like SPARQL queries

for RDF data [14] requires sufficient knowledge about the

underlying object-predicate-subject structure. For large scale

applications, imposing such knowledge on the user might be

unreasonable. More often, the user may know some attribute

values in a query, but not the exact structure in which they

are involved [16]. In this case, by modeling the RDF data

as an attributed graph, keyword search can find subgraphs

containing the user’s interested entities and values. These

subgraphs can then be used to derive candidate SPARQL

queries.

Figure 1. RDF data to attributed graph modeling

Figure 1 shows an example about the modeling. We need

to convert the RDF data with three “subject, predicate,

object” triples into an attributed graph for keyword search.

All the subjects like A and B are entities, so we model

them as nodes in the attributed graph. For entity-to-attribute

tuples, such as “A, is-a, teacher” and “B, is-a, student”, we

view the predicate and the object as keywords of the subject

node. For entity-to-entity tuples, such as “A, teaches, B”, we

view the predicate as a keyword of both the subject node

and the object node and link them by an edge.

In order to convert the answers of keyword search to

SPARQL queries, we create the following extra informa-

tion to encode different types of tuples. Note that such
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extra information is not part of the attributed graph and

is used only to convert the answers of keyword search

to the SLAROL queries represented by such answers. For

each entity-to-attribute tuple, we assign the subject node a

(predicate, object, 0) triple, such as the (is-a, teacher, 0)

triple of A and the (is-a, student, 0) triple of B, where 0

means it’s an entity-to-attribute relationship. We can use this

kind of triple to reconstruct the entity-to-attribute tuple given

either the predicate or the object keyword. For each entity-

to-entity tuple, we assign a (predicate, object, indicator)
triple to the subject, such as the (teaches, B, 1) triple of A

and the (teaches, A, 2) of B, where 1 and 2 indicate whether

the entity is a subject or an object. Similarly, we can use this

kind of triple to reconstruct the entity-to-entity tuple given

the predicate keyword.

Now, users can apply keyword search algorithms on the

attributed graph to find candidate answer sets with nodes

containing the query keywords. This step doesn’t involve

the extra information file. Then, the triples of related nodes

in the extra information file allow us to retrieve the entity-

to-entity or entity-to-attribute relationships and generate an

optional SPARQL query for each candidate answer set so

that users can select a query and apply it as the input to the

SPARQL engine.

One of the early approaches to graph keyword search

is finding Steiner trees to cover query keywords [1]. [2]

provides a dynamic programming algorithm to find top-k
minimum cost group Steiner trees, but its time complexity is

exponential. In [8], the authors propose a polynomial delay

algorithm, denoted by RClique, for searching r-cliques,

where a r-clique is a set of nodes that cover collectively

all query keywords and have a pairwise distance no larger

than r. RClique finds 2-approximation answers where the

distance between each pair of nodes in the answer produced

could be twice of that allowed by the distance constraint.

RClique algorithm requires a pre-determined distance

upper bound θ for all queries in order to index the distance

information from each node to all other nodes within its

θ-neighborhood. Requiring knowing a maximum distance

constraint leads to either a loose upper bound, or not

being able to process all queries. In a dense graph with

a large average degree, the neighborhood of a node ex-

pands quickly as the distance increases. For a big graph,

such full materialization of indexing, even only a limited

neighborhood of each node, might take very long time and

requires a huge storage. During query time, the indexed

information of all nodes containing query keywords needs to

be retrieved for processing. Random access of disk resident

node-based index will result an expensive I/O cost. With

2-approximation, some of the returned top-k answers may

violate the distance constraint and the best solutions may

not be in the returned top-k answers.

Another approach is proximity based search in the greedy

manner. [10] provides a greedy but NP-hard solution called

RareFirst that will return 2-approximate top-1 answer. The

GDensity framework introduced in [12] improves it by ap-

plying density indexing and likelihood ranking mechanisms

to find the top-k exact node sets covering all the query

keywords with smallest diameters. The idea is that if less

hops are needed to reach more nodes from a node, there is

higher chance for all query keywords to be covered within

smaller neighborhood of the node. The search starts from

nodes in the order of their likelihood ranks and increases the

search range by 1 in each iteration. The program terminates

once the priority queue of answers is full. Unlike RClique
algorithm, GDensity provides exact answers instead of 2-

approximation.

GDensity algorithm requires a distance upper bound θ for

indexing too. The indexing is fast and results in small index

size because it only records discrete distance distribution

within each node’s θ-neighborhood. However, GDensity
requires the whole graph to be loaded into memory for com-

puting shortest paths during query time, which is impractical

for big data. The search space could expand quickly for a

dense graph. In fact, the search is pruned mainly based on

the least frequent query keyword and other query keywords

are checked by the expensive shortest path computation.

Also, GDensity might not be able to terminate early when

the number of candidate answers is smaller than that of

expected answers. If the graph is weighted or the distance

constraint of the query is large, GDensity will waste time

on re-examination of query keyword coverage with the range

increased by only 1 at each iteration.

For large and dense graphs, especially when query key-

words are frequent, node-based keyword search algorithms,

such as RClique and GDensity, need to search a large

amount of tight communities that could be anywhere in

the graph. To address the weaknesseses of these existing

algorithms, we design a keyword-based algorithm called

KeyLabel algorithm based on the recent Hop Doubling
Label Indexing algorithm defined in [6]. Our KeyLabel
algorithm builds a new inverted index by associating the

linkage information with each keyword, instead of each

node, and ordering the indexed data in a distance sensitive

manner. During query time, it loads and analyzes only a

small amount of indexed information about query keywords.

The novelty of KeyLabel is its indexing and querying

strategies that push both keyword constraint and distance

constraint to prune the search.

Our contributions are summarized as follows: (1) We

introduce a new keyword-distance centralized indexing al-

gorithm, KeyLabel-Indexing, to overcome the bottlenecks

of node-centralized RClique-Indexing and GDensity-
Indexing. (2) We design a fast querying algorithm,

KeyLabel-Querying, to speed up query processing and

reduce memory space cost at the same time as compared

to RClique-Querying and GDensity-Querying. (3) Eval-

uation on real-world graphs supports that our KeyLabel
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Figure 2. (Offline) KeyLabel-Indexing

algorithm outperforms the other two in most cases.(4) We

evaluate the efficiency and effectiveness of KeyLabel in

reconstructing SPARQL queries on RDF data.

The paper is organized into sections as follows. Section II

specifies definitions and formal problem statements. Section

III introduces the process of KeyLabel-Indexing algorithm.

Section IV describes the procedure of KeyLabel-Querying
algorithm. Section V evaluates the efficiency of KeyLabel
algorithm and its effectiveness on constructing the queries

on RDF data. Section VI concludes the paper. Section VII

is the acknowledgement.

II. PROBLEM DEFINITION

Symbol Description
G = (V,E,W ) G a node-attributed graph, where V is

the node set, E is the edge set, W is
the keyword set, and W [v] is the set of
keywords that node v contains

Q = (QW,Dia, Tpk) a keyword query, where QW is the set
of keywords, Dia is the diameter con-
straint, and Tpk is the top-k constraint

dist(u, v) the shortest distance between node u
and node v

L2hop[v] the label entry list of node v in
(p, dist) format

vf [w] the list of nodes that contain keyword
w, where vf is the keyword-to-nodes
inverted file generated from G

Table I
FREQUENTLY USED NOTATIONS

For the convenience of presentation, we focus on undi-

rected and unweighted graphs, but it’s easy to modify current

KeyLabel algorithm to deal with directed and/or weighted

graphs. Table I shows the frequently used notations in our

paper.

Definition 1. (Diameter). Given a graph G = (V,E,W )
and a node set Vi ⊆ V , the diameter of Vi is the maximum

distance among the shortest distances of all node pairs in

Vi.

Definition 2. (Minimal Cover). Given a graph G =
(V,E,W ), a node set Vi ⊆ V and a keyword set Wi ⊆ W ,

Vi is a cover of Wi if Wi ⊆
⋃

v∈Vi
W (v). If Vi is a cover

of Wi, and no subset of Vi is a cover of Wi, then Vi is a

minimal cover of Wi.

Problem (Keyword Search with Diameter Ranking). Given

a graph G = (V,E,W ) and a query Q = (QW,Dia, Tpk),
the diameter ranking top-k keyword search finds Tpk node

sets {V1, V2, ..., VTpk} with smallest diameters such that

each set Vi has a diameter no larger than Dia and is a

minimal cover of QW .

The diameter ranking orders matching sets Vi by the

largest distance between any two members in Vi. Other

ranking methods such as pairwise total distance, which is

the sum of shortest distances of all pairs of nodes in the

answer set, or even the combination of diameter and pairwise

total distance are also supported by our KeyLabel algorithm.

Notice that if there are less than Tpk minimal covers with

diameters no larger than Dia, all such minimal covers will

be returned as the answer set. In the following two sections,

we’ll introduce the detailed mechanisms of indexing and

querying of KeyLabel algorithm separately.

III. KEYLABEL-INDEXING

KeyLabel-Indexing is the offline step of KeyLabel and

is performed only once. This step combines the label entry

result of Hop Doubling Label Indexing with an inverted

file vf to build a new index that attaches partial linkage

information of each node to their keywords. Figure 2 shows

the two components of KeyLabel-Indexing. The graph is

first indexed into label entries of nodes as described in

Section III-A, then together with inverted node lists, the

labels are assigned to keywords in a new format as explained

in Section III-B.

A. Hop Doubling Label Indexing

This step adopts the hop doubling label indexing in [6] for

point-to-point distance querying on weighted and directed

graphs. It constructs incoming and outgoing label lists for
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Figure 3. (Online) KeyLabel-Querying

each node so that the shortest distance between any pair of

nodes can be found by simply looking up the two nodes’

label lists. For the convenience of presentation, we focus

on undirected graphs, so every node has only one label list.

The label of a node v, denoted by L2hop[v], is a set of label

entries in the format (p, dist), where p is a pivot node that

acts as an intermediate node for answering distance queries

involving v in 2 hops, and dist is the shortest distance

between v and p.
The shortest distance between nodes u and v can be

found by searching their label entry lists to see whether

there are two label entries, one from each list, having the

same pivot node. If dist(u, v) �= ∞, we can find a pivot

node p such that (p, dist1) ∈ L2hop[u] and (p, dist2) ∈
L2hop[v], and there doesn’t exist another pivot node q
such that (q, dist3) ∈ L2hop[u], (q, dist4) ∈ L2hop[v] and

dist3 + dist4 < dist1 + dist2. In this case, dist(u, v) =
dist1 + dist2. Thus, the shortest distance dist(u, v) can be

found by searching L2hop[u] and L2hop[v] for a pivot p with

minimum dist sum.
As shown in [6], for an unweighted graph, the com-

putation cost of Hop Doubling Label Indexing algo-

rithm is O(|V |logM(|V |/M + log|V |)), the I/O cost is

O(|V |log|V |/M ×|V |/B), and the index size is O(h|V |),
where h is a small constant, M is the memory size and B
is the disk block size. Since the index is stored on disk and

the index size is proportional to the number of nodes, not

the number of edges, this method is scalable to large graphs.

B. Keyword Label Indexing
As the second component of the offline indexing step, the

keyword label indexing combines the 2-hop index file lf
generated by the Hop Doubling Label Indexing algorithm

with the keyword-to-nodes inverted file vf . All the label

entries of nodes containing each keyword will be bounded

to the keyword and recorded in the output keylabel file kf .

To associate the label entries of a node v to a keyword k
that v contains, we change the label entries of v from the

format (p, dist) to the format (v, p, dist) so that all (p, dist)

label entries of each node can be easily regrouped later. We

then sort all the label entries associated with the keyword k
in ascending order of dist before they are written into the

keyword label file kf . The sorting allows us to retrieve the

label entries with dist up to a certain diameter constraint

without examining the whole label entry list.

Taking the keyword b in Figure 2 for example, we first

read the nodes {v2, v4} from the inverted file vf . Then we

read label entries {(v2, 0), (v3, 1)} of node v2 and label

entries {(v4, 0), (v3, 1)} of node v4 from the 2-hop label

index file lf . We reconstruct label entries from (p, dist) to

(v, p, dist) format to indicate which node the label entry

belongs to. After sorting the new label entries based on dist,
we have {(v2, v2, 0), (v4, v4, 0), (v2, v3, 1), (v4, v3, 1)}
as the label list of keyword b.

IV. KEYLABEL-QUERYING

KeyLabel-Querying is the query processing step of Key-
Label at query time. Figure 3 gives an example of the pro-

cedure of KeyLabel-Querying. First, Label Retrieval loads

the label entries of each query keyword from kf , reformats

and reassigns them to nodes as described in Section IV-

A. Then Depth-First Answer Search is performed on an

imagined tree-like structure to search for candidate answers

as explained in Section IV-B.

A. Label Retrieval

For a given query Q = (QW,Dia, Tpk), Label Retrieval
first loads the label entries of query keywords from the

keylabel index file kf . Since label entries have already been

sorted on dist, we can use a sequential scan to extract only

the prefix of kf [w] for every keyword w in QW cut off by

Dia. This is because when we later try to find the shortest

distance between two nodes by looking for the smallest sum

of dists of two label entries, one from each node’s label

entry list, the result must exceed Dia if the dist of either

label entry already exceeds Dia. Typically, the memory is

large enough to hold all such prefixes for a query because

the number of keywords in a query is small and each node
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has a limited number of label entries with dist no larger

than Dia.

After obtaining the list of label entries in the (v, p, dist)
format from kf , we change them back to the original

(p, dist) form to construct a new 2-hop label entry list

L′
2hop[v] of node v, and sort the list in ascending order of

pivot nodes p. The sorting of p allows us to calculate shortest

distance between two nodes by checking the intersection of

pivot nodes in a linear time of their total label size. This

arrangement will save huge processing time because we need

to frequently perform shortest distance calculation between

two nodes in later depth-first answer search.

B. Depth-First Answer Search

Now, we can find the Tpk answers by a depth-first search

with pre-order traversal. As shown in Figure 3, the node list

of three query keywords a, b and c read from the inverted

file vf will be loaded into memory and viewed as three

levels in an imagined tree-like structure with an empty root.

Each node list represents one level for DFS traversal. Note

that the linkage information between nodes in the imagined

structure is not maintained, so we just need a little memory

space for keeping nodes in the most recently visited path

from the root to current node.

In the imagined tree-like structure, all nodes in level t are

the children of every node in level t-1. Suppose we have

a current DFS visit on node v2 in level 2 and a previous

DFS visit on node v4 in level 1, the path that contains most

recently visited nodes in each level from level 1 to level 2

form a node set C ′ = (v4, v2). The diameter ranking score

of C ′ is a lower bound on the score of any node set that is

a super set of C ′. The score is monotonic because adding a

node to a node set does not decrease its score. Suppose we

have a next DFS visit on node v3 in level 3, which leads to a

node set C = (v4, v2, v3). Let DB(C) denote the diameter

score of C. The scores of C can be computed from those

of C ′ with additional calculation of distance information

between node v3 and any other node in C as following:

DB(C) = max{DB(C ′), dist(v3, v4), dist(v3, v2)}. Note

that we need to remove duplication from the node set before

calculating the scores.

Due to the monotonicity of node set’s scores, if

DB(C ′) > Dia, all DFS visits that result in a super set of

C ′ can be skipped for candidate answer examination. When

a path reaches a leaf node in the imagined tree structure and

the related node set passes the diameter check, we consider

the node set to be a candidate answer that meets the keyword

and diameter constraints. To check whether the node set is

a minimal cover of query keywords, we remove one node

each time from the set to see whether the remaining nodes

cover all the query keywords. If the candidate answer is a

minimal cover of QW , it would be inserted into the top-k
priority answer queue based on the various ranking methods

of different problems.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the claims we made about

the proposed method KeyLabel in Section I. The experi-

mental comparison of RClique, GDensity and KeyLabel
algorithms is done under a C++ environment in Linux OS

using a machine with an Intel(R) Core(TM) i5 2.67GHz

CPU, 8GB RAM and 7200RPM SATA hard disk.

A. Tested Data Sets

Data set Node Edge Avg Keyword/Node Avg Degree
DBLP1 317K 664K 0.344 4.19
DBLP2 317K 1M 2.27 6.62
BTC 168M 181M 0.3 2.2
RDF 894K 963K 14.68 2.15

Table II
INFORMATION ABOUT DATA SETS

The statistics about node number, edge number, average

keyword per node and average degree of each tested data set

are summarized in Table II. DBLP1 and DBLP2 represent

graphs of varied degree density for comparison among

three algorithms. BTC represents varied size graphs for

evaluating scalability. RDF data set is used to evaluate the

effectiveness and accuracy of constructing SPARQL queries

from keyword search. All selected data sets are undirected

and unweighted.

DBLP1 The DBLP1 graph is modeled from the DBLP

XML data (http://dblp.uni-trier.de/xml/ ). It contains the in-

formation about a collection of papers and authors as nodes

and related citations and authorship as edges. Words in paper

title and author names are viewed as keywords. We extract

the same number of nodes as DBLP2 data set from the

original XML data in order to compare the influence of

average degree and average keyword on performance.

DBLP2 Similar to DBLP1, the SNAP DBLP2 data

set is a collection of research papers in computer sci-

ence field (http://snap.stanford.edu/data/com-DBLP.html), in

which nodes represent authors, and edges represent co-

authorship of two authors if they published some paper

together. Authors belong to the same community if they

published to the same journal or conference, which is used

as a keyword. DBLP2 has higher average degree and average

keyword per node than DBLP1 data set, which increases the

general difficulty of keyword search.

BTC The BTC semantic graph is converted from the

Billion Triple Challenge 2009 data set. To distribute syn-

thetically generated keywords with size equal to 0.1% of the

node size, we sort nodes in increasing order of their degrees

and evenly divide keywords into three categories marked as

“easy”, “medium” and “hard”. For each “easy” keyword, we

randomly draw 100 nodes from the first 1/3 sorted nodes and

assign the keyword to them. Similarly, we randomly draw

300 and 500 nodes from the second 1/3 and last 1/3 of the
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sorted nodes for each keyword in the “medium” and “hard”

categories. Keywords with larger average degree of nodes

and higher frequency would induce larger search space and

thus increase the difficulty of keyword search for all the

three algorithms.

RDF The RDF data provided by DBpedia organi-

zation (http://benchmark.dbpedia.org/benchmark 10.nt.bz2)

defines a benchmark for data extracted from Wikipedia in

RDF format. We’ll apply the modeling mentioned in the

introduction before doing keyword search.

B. Indexing Comparison on DBLP Data

Dataset-Algorithm Time (s) Size (MB) Memory Usage (MB)
DBLP1-RClique 18626 12595 176
DBLP1-GDensity 346 30 710
DBLP1-KeyLabel 600 685 1373
DBLP2-RClique 76162 48742 351
DBLP2-GDensity 503 10 782
DBLP2-KeyLabel 771 3174 2322

Table III
INDEXING TIME, INDEX SIZE AND MAXIMUM INDEXING MEMORY

USAGE COMPARISON

As shown in Table III, RClique-Indexing needs more

than 10 times longer time and larger disk space than the

other two algorithms because of its full materialization

of indexing. RClique-Indexing requires minimum memory

space because it only examines the θ-neighborhood of one

node each time. GDensity-Indexing has minimum indexing

time and index size because it only calculates and stores the

distance distribution within every node’s θ-neighborhood.

However, When the graph is too large to be held in main

memory, GDensity algorithm will become inapplicable.

Unlike the indexing of RClique and GDensity that re-

quires a diameter upper bound θ, KeyLabel-Indexing pro-

vides full indexing that can be used to answer queries with

any diameter constraint. The indexing time of KeyLabel
algorithm is the total time used for Hop Doubling Label
Indexing and keyword label list indexing. Although larger

memory space is needed to load label entry lists and assign

them to the related keywords, the procedure is done only

once offline and later allows a very small portion of such

label entries to be retrieved at querying time.

C. Querying Comparison on DBLP Data

The difficulty of queries is decided by four factors,

including diameter constraint, top-k constraint, query size

and keyword difficulty. The diameter constraint (Dia) is set

according to the average diameter and largest diameter of

each data set. Too large diameter will cause almost the

whole graph to be searched, which is not practical. Too

small diameter often leads to a small searching range and

consequently results in very little search time, which is not

good for comparison. The top-k constraint (Tpk) allows us

to observe how the query search time varies when different

numbers of answers are requested. Different query sizes

(Qsz) are tested because more keywords would lead to more

combinations of candidate answers to verify. The difficulty

of keywords (Dif )is decided by the frequency of keywords,

which affects the size of search space.

For the comparison of querying time of three algorithms,

we draw three sets of curves showing their query speed with

different settings of the four most important factors. For

each data set, we test 3 Dias, 3 Tpks, 4 Qszs and 3 Dif s,

resulting in 108 combinations of parameter setting in total.

We create 10 queries for each of the 108 combinations. The

average search time of queries that have the same value of a

particular parameter would be used as performance criteria.

Dataset-Algorithm Memory Usage (MB)
DBLP1-RClique 3822
DBLP1-GDensity 447
DBLP1-KeyLabel 8
DBLP2-RClique 7054
DBLP2-GDensity 694
DBLP2-KeyLabel 56

Table IV
MAXIMUM QUERYING MEMORY USAGE COMPARISON

As shown in Table IV, RClique-Querying has very large

memory space usage because the linkage information of

nodes that contain query keywords will be loaded when

query comes. GDensity-Querying has to keep the whole

graph structure in memory when doing query, so the memory

space used for query search is relatively large. KeyLabel-
Querying only retrieve query keywords’ label entries with

distance no more than Dia for querying, so it requires much

less memory space usage than the other two algorithms. Due

to the complexity of queries, some query search might take

very long time, so we setup a threshold of 100 seconds

for each single query search. All query times exceed this

threshold will be set to 100 seconds before averaging.

Figure 4. Querying performance on DBLP1

DBLP1 Data. KeyLabel-Querying can finish all of the

1080 tested queries within 0.1 second, while 40 queries

exceed 100 seconds with RClique-Querying, and 5 queries
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exceed 100 seconds with GDensity-Querying. In Figure

4, KeyLabel-Querying has almost same average query

time for all settings because most of the time is spent

on basic setup. Since the average degree and average key-

word of DBLP1 data set are very low, GDensity-Querying
needs less average querying time than KeyLabel-Querying
for some easy settings. But as queries become harder,

our KeyLabel-Querying obviously outperforms GDensity-
Querying. RClique-Querying requires the largest average

querying time in all cases.

Figure 5. Querying performance on DBLP2

DBLP2 Data. The average querying time of testing 1080

queries on DBLP2 data is shown in Figure 5. No query

exceeds the threshold for KeyLabel-Querying, and the

longest search time is less than 4 seconds. 77 queries take

more than 100 seconds to finish for GDensity-Querying.

For RClique-Querying, the number increases to 204. Our

KeyLabel-Querying outperforms the other two algorithms

more clearly on the DBLP2 data set because it has higher

average degree and average keyword per node than the

DBLP1 data set. Again, RClique-Querying requires largest

average querying time in all cases.

D. Scalability Test on Large BTC 2009 Data

When the data set is large, RClique and GDensity might

become impractical because both algorithms would take too

much time for indexing or require large memory space

for querying. We tested the scalability of our KeyLabel
algorithm on the large BTC 2009 data set, which has much

larger size than the other three data sets and cannot be

indexed or queried by RClique (over 100 hours for indexing)

and GDensity (not enough memory space) in our machine.

To verify the influence that the size of graphs has on our

KeyLabel algorithm, we also test 50M-node and 100M-node

data subsets extracted from the original 168M-node graph.

The number of keywords for the three data sets is set to

0.1% of the number of their nodes.

Table V shows the indexing time, index size, maximum

main memory usage for indexing and maximum main mem-

ory usage querying of KeyLabel algorithm on BTC data

sets. Even for the largest 168M-node data set, our KeyLabel

Node (M) 50 100 168
Indexing Time (s) 1661 12704 25601
Index Size (MB) 2867 6861 12288
Indexing Memory Usage (MB) 3934 4748 5722
Querying Memory Usage (MB) 487 950 1851

Table V
INDEXING AND QUERYING STATISTICS ON BTC

Figure 6. Scalability test of querying time on BTC

algorithm does not require too much memory space at

querying time, and the indexing cost is acceptable. Figure 6

shows the search time performance of KeyLabel algorithm

on BTC data sets. Although the index size of the BTC data

set with 168M nodes reaches 12GB, all queries can finish

within 1 second. The querying time increases almost linearly

with the four factors of query setting for all three data sets,

but the influence of keyword difficulty is obviously larger

than that of other three factors.

E. Accuracy Test on DBpedia RDF Data

As a concrete application, we evaluate our KeyLabel
algorithm for constructing optional SPARQL queries for the

RDF data set introduced in Section V-A. We compare the ac-

curacy of computed queries with the result of RClique. Note

that GDensity produces exact answers as our KeyLabel
algorithm instead of 2-approximation, so we skip comparing

the accuracy with GDensity.

We randomly select 20 subgraphs with diameter 4 and

construct the related SPARQL queries from the subgraphs

as our “ground truth”. For each ground truth SPARQL query

QS , we create a keyword search query Q by picking 1 to

2 meaningful keywords from each node in the subgraph

induced by QS to simulate users’ partial knowledge about

QS . Then we apply RClique and KeyLabel algorithms to

produce top-10 answers for Q and rebuild SPARQL queries

Q′
S by retrieving the linkage information for the nodes in

each of top-10 answers. At last, we identify whether any re-

built SPARQL query Q′
S matches the corresponding ground

truth SPARQL query QS and compare the highest ranked

match of both algorithms. The higher rank of a match,

the more useful the graph keyword search for constructing

SPARQL queries for RDF data.

Table VI shows the result of accuracy test on RDF

data. Taking Query10 for example, 6 means that among
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Queries KeyLabel RClique Queries KeyLabel RClique
Query1 1 2 Query2 2 6
Query3 1 1 Query4 1 -
Query5 1 1 Query6 1 1
Query7 1 1 Query8 1 4
Query9 2 - Query10 6 -
Query11 2 2 Query12 1 1
Query13 1 1 Query14 1 1
Query15 1 1 Query16 1 1
Query17 1 1 Query18 1 1
Query19 2 1 Query20 1 1

Table VI
THE FIRST HIT RANK OF RECONSTRUCTED SPARQL QUERIES

the 10 answers returned by the KeyLabel algorithm, the

SPARQL query rebuilt from the 6th ranked answer is the first

match to the corresponding ground truth SPARQL query. -

, on the other hand, indicates that none of the SPARQL

queries rebuilt from the 10 answers returned by the RClique
algorithm is a match to the corresponding ground truth

SPARQL query. Except for Query19, KeyLabel algorithm

has the same or higher ranked hit than RClique. The lower

ranked hit of RClique is caused by the 2-approximation of

answers returned, which returns many loose answers having

a large diameter.

VI. CONCLUSION

Many large graph search problems can be modeled as

graph keyword search problems. We studied this problem

for large graphs where previous approaches suffered from

serious bottlenecks. The proposed KeyLabel algorithm takes

the result of Hop Doubling Label Indexing algorithm,

assigns reformatted label entries to keywords to generate

an index based on both keywords and distance of nodes,

and performs fast keyword search with small memory space

usage using that index. KeyLabel algorithm shows good

performance even for very large data sets. KeyLabel is

proven to outperform RClique and GDensity in most cases.

The experimental result also verifies the efficiency and

accuracy of KeyLabel algorithm in mapping keyword based

queries to SPARQL queries on RDF data sets.
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