IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005 1

Integration and Efficient Lookup of
Compressed XML Accessibility Maps

Mingfei Jiang and Ada Wai-Chee Fu, Member, IEEE

Abstract—XML is emerging as a useful platform-independent data representation language. As more and more XML data is shared
across data sources, it becomes important to consider the issue of XML access control. One promising approach to store the
accessibility information is based on the CAM (Compressed Accessibility Map). We make two advancements in this direction:

1) Previous work suggests that for each user group and each operation type, a different CAM is built. We observe that the performance
and storage requirements can be further improved by combining multiple CAMs into an ICAM (Integrated CAM). We explore this
possibility and propose an integration mechanism. 2) If the change in structure of the XML data is not frequent, we suggest an efficient
lookup method, which can be applied to CAMs or ICAMSs, with a much lower time complexity compared to the previous approach. We

show by experiments the effectiveness of our approach.

Index Terms—XML security, ICAM, CAM , XML accessibility lookup.

1 INTRODUCTION

WITH more and more data represented in XML, the
issue of controlled access for XML data has become
extremely important. Encryption and digital signature
methods, mainly used in electronic transactions, do protect
the XML data in some aspects [4]. However, the design of a
sophisticated access control mechanism for XML data still
remains an open issue [15]. The models proposed by [3], [7]
permit access control at different granularity levels and
provide both positive and negative authorizations to better
handle exceptions.

The study of access control for relational and object-
oriented database models has a long history [5], [22], [10],
[13], [14], [24], [20]. The access control for XML data is more
complicated due to its semistructured feature. References
[8], [3], [15], [19] are important work concerning the
definition of various access control models for XML data.
Fundulaki and Marx [12] survey some of these models and
proposes a simple and unambiguous language to specify
the access authorizations for XML data with XPath. While
these efforts focus on constructing a semantically complete
model to specify authorizations, but discuss little about the
efficiency of space and evaluation time of a query in the
presence of a set of authorizations. Fan et al. [11] is one
possible complementary work of these efforts. It inherits the
access control mechanism from relational database systems.
For each user or group of users, a virtual security view is
generated, which is embedded into the query before
evaluating the query against the document. The method
in [11] requires that the XML document conform to a DTD
and every query be rewritten before being evaluated. Yet,
another possible solution is to evaluate the authorizations in
advance and generate an accessibility map for each user or a
group of users, then to look up this map to discover the

e The authors are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong, China.
E-mail:{mfjiang, adafu}@cse.cuhk.edu.hk.

Manuscript received 6 Jan. 2004; revised 9 Aug. 2004; accepted 2 Dec. 2004;
published online 18 May 2005.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0004-0104.

1041-4347/05/$20.00 © 2005 IEEE

accessible nodes for an incoming query. But, since the
accessibility of every node is explicitly defined, accessibility
lookup involves scanning the whole map, which can be
highly inefficient in both space and time.

This paper studies the problem of compressing the
accessibility map while still achieving acceptable lookup
time. We assume that the authorizations have been clearly
defined by one of the models, such as [12], and we evaluate
them in advance to generate an accessibility map for each
user group. Then, we try to compress these maps. The idea
of the compressed accessibility map (CAM) is proposed by
Yu et al. [25]. Efficient lookup on the compressed map is
studied in [17]. However, in [25], one CAM is constructed
for each possible operation type and for each user group.
We notice that if we merge the CAMs for different types of
operations into one integrated CAM (ICAM), we can further
reduce the space needed for the accessibility maps. In
addition, with the integrated CAM, if a user needs to look
up the accessibilities for multiple types of operations for a
data object, he/she needs to refer to only one ICAM, instead
of multiple CAMs. We also study the lookup mechanism
and propose a new method whose time complexity is much
lower than that of the previous approach. The new method
can also be applied to CAMs.

Our key contributions are as follows:

e We propose an algorithm to merge the optimal
compressed accessibility maps for different types of
operations into one ICAM. The result is a more
compressed form of the accessibility maps which
consolidate the information for each user/user
group.

e  We propose an efficient lookup method to determine
the accessibility of a node with a time complexity of
O (depth of the requested node in the XML tree + log (the
maximum fanout of the ICAM or CAM)). This method
applies to both CAM and ICAM, and its time
complexity compares favorably with the previously
known time complexity of O (depth of the requested
node in XML tree x log(CAM size)).

Published by the IEEE Computer Society



2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

E (1,0,0,1,10)
(2,0,1,2,2) 21153 22192

(2,3,/2\13,2) (2,4,52X6,2)

@GAAAAAAAG@

(3,1,2,4,0)

(3,3,570) (359100) (37,13,14,0)

Fig. 1. A marked XML tree.

o We verify the effectiveness of the ICAM and the
lookup method for both space and time require-
ments by experiments.

2 CAM

An XML document is one kind of semistructured data,
which can be represented as an XML tree (or XML database
tree in [25]) with a node for each element, attribute, and
value in the document, and with an arc between each
element and each of its subelements or attributes or values
and between each attribute and its value(s) [1]. References
[20] and [21] are the early works that describe a blueprint of
the authorization mechanism for object-oriented and semi-
structured database. They denote an authorization by a
3-tuple, consisting of an authorization type (we refer to it as
an operation type in this paper), an authorization object and
a subject. The idea of implicit authorization is also
introduced. That is, given a set of explicitly specified
authorizations (authorization base), other authorizations,
such as the operation type, object, and subject domains can
be inferred. Authorization that is not stated explicitly and
can be implied by authorization base is called implicit
authorization. In this way, space can be saved by storing
only the authorization base. Utilizing such an idea, the
space for the accessibility map of an XML document can
also be reduced.

CAM is one of the works that utilize the idea of implicit
authorization along the dimension of authorization object.
CAM stands for Compressed Accessibility Map. It is
proposed by Yu et al. [25]. An accessibility map is generated
by evaluating the authorizations against an XML document.
It states the accessibility of each node in an XML document
for a user. Storing the whole accessibility map takes up lots
of space. In [25], the authors observe the structural locality
of the accessibility of XML documents. That is, if a node is
accessible (inaccessible) for some operation for a user, it is
very likely that the same is true for its ancestors, its
descendents, and its siblings. It becomes possible to record
or label a node such that by default all the descendants are
accessible (inaccessible), so that the labels of such descen-
dants can be omitted to greatly reduce the number of labels.
In other words, the accessibilities of some nodes can be
induced by the labels of the others. As a result, instead of
storing the whole accessibility map, it is possible to store
only a small portion of the accessibility information. They
refer to the resulting map as the compressed accessibility
map, i.e.,, CAM.

(0,0,0,0,30)

m (1,1,0,12,8)
2,5,12,19,1)

1,2,0,21,6) o
©» © @

(2,8,28,29,0)
(3,14,75,26\0)

(3,12,22,23,0)

It is convenient to first assume that when a node is
accessible, then all of its ancestors are also accessible. In
other words, the descendants of an inaccessible node must
also be inaccessible. But, this assumption may not hold in
reality. Yu et al. solve this problem by decomposing the
whole tree into regions, each of which satisfies the
assumption. They called such a region a unit region. The
construction and lookup algorithms for unit regions are
modified to handle the general case.

2.1 First Step

The first step of constructing a CAM in a unit region is to
assign labels to the nodes in an XML tree of the form
(s*,dx), accordingly. Here, “*” can be either “+” or “—.”
s+ /s— means that the current node is accessible/
inaccessible in terms of an operation type.' d + /d — means
that the descendants of the current node are also accessible/
inaccessible unless they are overruled by the label of their
closest ancestors. The notions of positive/negative/neutral
nodes are proposed in [25] to determine the d part of the
internal nodes during the labeling step. An internal
terminal node refers to a nonleaf accessible node with no
accessible descendants. (An internal nonterminal node is a
nonleaf node that is either inaccessible or that has some
accessible descendants.)

Definition 1. [25] Given an operation, and an XML tree, a node
e is positivelnegative provided that e is an accessible/
inaccessible leaf, or e is an internal nonterminal node with
more positive/negative than negative/positive children. A node
e is neutral if it is an internal nontermznal node with the same
number of positive and negative children.”

Here, we give an example to illustrate the first step in the
construction of a CAM in a unit region, the details of the
algorithm can be found in [25].

Example 1. Fig. 1 shows an XML document in the form of a
tree [1]. (Let us ignore the numerical labels in the tree for
now.) The square nodes can be written and read, the
triangular nodes can only be read, and the circular nodes
are inaccessible. In order to construct a CAM for the read
operation, we first assign labels to the nodes in the XML
tree of the form (s*, d+) according to the accessibilities for
the read operation. The labeling is done bottom up:

1. When we say that a node is accessible for an operation, it means that
the operation can be executed on the node, or the operation is permitted at
the node.

2. Note that an internal terminal node is neither positive, nor negative,
nor neutral.



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 3

(s+, d+)

(s+, d-)

(s+,d-) (s+,d-)

(a) (b)
Fig. 2. CAMs and ICAM for the example XML tree.

1. L.(D)=L,(FE)=(s—,d—) (inaccessible and nega-
tive).

2. L,(C) = (s+,d—) (internal terminal).

3. All the nodes in the subtrees rooted at /' and J are
labeled with (s+,d+) (accessible and positive).

4. L,(B) = (s+,d+) (accessible and positive).

5. All nodes in the subtree rooted at N are labeled
(s+, d+) (accessible and positive).

6. L,(R)=L,(S)=(s—,d—) (inaccessible and ne-
gative).

7. L, (Q) = (s+,d—) (internal terminal).

8. L.(T)=L,(e) = (s—,d—) (inaccessible and nega-
tive).

. L,(M) is deferred, for it is neutral.

10. All nodes in the subtree rooted at U (except U) are
labeled (s—, d—) (inaccessible and negative).

11. L.(U) = (s+,d—) (internal terminal).

12. All nodes in the subtree rooted at b is labeled with
(s—,d—) (inaccessible and negative).

13. A is neutral. As it is the root, we arbitrarily
label it with (s+,d—). It leads M to be labeled
as (s+,d—), too.

2.2 Second Step

The second step of the construction is to delete redundant
labels in a certain order. There are two kinds of redundant
labels in a labeled XML tree [25]. 1) The subsumed labels. A
subsumed label is a label that is not in the CAM but that can
be induced by other labels in the CAM. 2) The upward
redundant labels. For such a label, the “s” can be induced,
and “d” is immaterial because all the children of that node
are either labeled or upward redundant in the CAM.

Definition 2 (Upward Redundant Label [25]). A label of a
node e in a CAM C'is said to be upward redundant if e has a
accessible proper descendant,® and for every child c of e, either
c is labeled in C or c is upward redundant.

Example 2. We illustrate Step 2 of the construction by
continuing with Example 1. In this step, we delete the
redundant labels (subsumed labels are deleted before
upward redundant labels, while the order of subsumed
and upward redundant label deletion is immaterial), we
obtain the CAM for the read operation, which is shown
in Fig. 2a. For example, L,(D) and L,(F) are subsumed

3. We consider e to be its own descendent, a descendant of e is proper if
it is not equal to e.

o (s+, d-)
) (F) {9 )

(s+, d-) (s+, d-) (s+, d-) (s+, d-)

(sr, dr)

(sr, dn)

(c)

by d— of L,(C). Thus, they are deleted. There is no
upward redundant label in this example. The CAM for
the write operation is shown in Fig. 2b.

Later on, we refer to a CAM for an operation « as CAM,,.
The deleted labels for the XML tree can be induced from the
labels in the CAM by Definition 3. For example, given
CAM,., the label of node M can be induced from the label of
A and that of either N or Q.

Definition 3. [25] Given a CAM for an operation z, CAM., the
induced label at a node e in the corresponding labeled
database tree (we use the term XML tree in this paper), written
L.(e), is its label in CAM, if one exists. Else, let y be the
nearest labeled ancestor of e if any (note that e is also
considered its own ancestor and its own descendent):

e Ifyhas a label (s+,d+) and L,(e) = (s+,d+).
o Ify has a label (s—,d—) and L.(e) = (s—,d—).
e Ify has a label (s+,d—):

e If e has a descendant labeled either (s+,d—) or
(s+,d+), L.(e) = (s+,d—).
e Else L.(e) = (s—,d—).
o If e has no labeled ancestor,* L.(e) = (s+,d—).

3 INTEGRATED CAM (ICAM)

3.1 Motivation of ICAM

In [25], if there are multiple operation types defined in the
system, a different CAM is constructed for each type of
operation and for each user group. We observe that the set
of accessible nodes for different types of operations® may
overlap, e.g., as shown in Figs. 2a and 2b, node C is labeled
in both CAMs for read and write operations. Assume that if
the write operation is allowed, the read operation is
automatically allowed. We say that write covers read. The
“cover” relation of operations can be represented by an
operation hierarchy in which a node “covers” its descendent
nodes. With the assumption of such a hierarchy, it is
possible to combine all the CAMs for different operations to

4. In this case, L.(e) is undefined in [25]. From the assumption that if a
node is accessible, all its ancestors should be accessible, e has no labeled
ancestor only when it and all its ancestors are upward redundant. Then,
they should have at least one accessible labeled descendant by the definition
of the upward redundant label. Hence, e should be accessible, implying that
the “s” part of L.(e) must be “+.” While the “d” part of its label is not
essential for all of its children are labeled or upward redundant. We assign
“—" to it in order to simplify our proof.

5. In the remaining discussions, we shall refer to “type of operation”
simply as “operation,” if no ambiguity may arise.



(a) (b)

N RoRCRCHe

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

-~
fuprh
~ o’

- -
! \ ( \ ( \
UD/ Ul / \DI 2

To<<I><]
@O ® O

(c) (d)

Fig. 3. Operation hierarchies (the composite operations are represented in the dashed circle).

form an integrated CAM (ICAM). Given an XML tree, an
ICAM is a compressed accessibility map where labels of a
subset of the XML nodes are recorded, the accessibility
information of all operations have been integrated at each
labeled node, and from this map, the accessibility of each
node in the XML tree for each operation can be determined.
If we use a label having a form of (s%,dx*) to represent the
accessibility information of each node in an ICAM, the label
can be obtained from merging the labels in the CAMs for
each operation. Roughly speaking, in this example, we label
a node with (s*,d+) where x can be r,w,n. The label sn
means that the node is not accessible, sr means it is read
accessible, sw means it is write accessible, which implies it
is also read accessible. The d part can be understood
similarly for the descendants of the current node. For
example, Fig. 2c shows an ICAM for the read and write
operations of the XML tree in Fig. 1. We will further explain
the meanings of the labels in the following sections.

In practice, many authorization mechanisms, for exam-
ple, [20], [3], [6], assume an operation hierarchy, in which a
partial ordering of operations exists, so that if a user is
allowed to do one operation, some other operations are
automatically permitted. If no explicit hierarchy exists,
there is always an implicit hierarchy for the multiple
operations, which is composed of atomic and composite
operations. For example, the Unix file system supports
three atomic operations: read, write, and execute (r,w,z).
An implicit operation hierarchy exists, which contains four
composite operations: ReadWrite (rw), ReadExecute (rz),
WriteExecute (wx), and ReadWriteExecute (rwz), as illu-
strated in Fig. 3a.

Thus, we claim that assuming an operation hierarchy is
reasonable and beneficial. Under such an assumption, when
the CAMs for different operations overlap in the node sets,
the size of ICAM is smaller than the total size of the CAMs.
Thus, we can further reduce the space needed to store the
accessibility map. In the following sections, unless speci-
fied, the term “operation” refers to both atomic and
composite operations.

3.2 Operation Hierarchy

Here, we introduce the operation hierarchy more formally,
where every element in the hierarchy stands for an allowed
operation. And, an operation may “cover” other operations.

Definition 4. Operation x covers operation y if whenever
operation x is permitted at a node, operation y is also permitted
at that node. We denote this by x > y. It defines a partial
ordering on the operations.

We say that « immediately covers y if > y and there is
no distinct z with z > z > y. If z > y and = # y, we can write
x > y. If z does not cover y and y does not cover x, we write
x ~y. A graph of the cover relation is the digraph whose
vertices are the operations and which has an edge from x to
y if and only if  immediately covers y. If we always draw x
above y when z > y, we have an operation hierarchy. We
make the following assumption.

Assumption 1. Given any two operations, x and y, in an
operation hierarchy, where x and y have no “cover” relation,
i.e., x ~ vy, if it is possible that x and y are both allowed at a
node in the XML tree, there should be a composite operation, o,
s.t. o immediately covers both x and y. And, when x and y are
both permitted at a node, o is permitted at the same time.

Then, the label of o can be inferred from those of x and y.
That is, if both the s part of 2 and y are “+,” then the s part
of ois “+”; otherwise, it is “-.” The d part of o’s label can be
inferred in the same way.

Fig. 3 shows three possible operation hierarchies for four
atomic operations, Delete(D), Update(U), Insert(I), and
Read(R). In Fig. 3b, D covers all the other three operations;
I covers U and R; and, U covers only R. In Fig. 3¢, D,U, I
cover R, but they do not cover each other, and at most one
of them is permitted at a time. For example, once a node can
be deleted, it can be read because D covers R. But, it cannot
be updated or inserted. If more than one operations are
allowed at a time, the operation hierarchy becomes Fig. 3d,
in which one composite operation is created for each
possible combination of atomic operations. And, these
composite operations are presented in dash circles. An
operation hierarchy has the following properties.

Property 1. Every operation hierarchy implies a virtual null
operation, n, denoting no operation is permitted. n is covered
by all the other operations in the operation hierarchy. And, for
every node, e, in the XML tree, L,(e) = (s+,d+).

Property 2. The operation hierarchy is a directed acyclic graph
(DAG) and can be topologically sorted.

An operation hierarchy is constructed by the “cover”
relation, which is asymmetric. Hence, the graph on this
relation cannot have a cycle. Thus, the operation hierarchy is
a DAG. A topological sort [2] of a digraph G is a sequence of
all the nodes of G so that if x appears before y in the
sequence, there is no path from y to z in G. It is proved by
construction in [23, p. 549] that every DAG can be
topologically sorted. Hence, Property 2 holds. For example,
one of the topological sorting of the operation hierarchy in



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 5

Fig. 3d is UDI>»>UD>»UlI>DI>U>D>1> R.
And, it is easy to see that given two operations, x and y, in
an operation hierarchy, # > y implies « >> y, but not vice
versa. And, if  >> y, we say that x is larger than y, or y is
smaller than z.

It is obvious that the slimmer the operation hierarchy,
the higher the probability that the CAMs will overlap,
which leads to more space being saved. Even if there are no
relationships among the atomic operations (see Fig. 3a), it is
still possible for the CAMs to overlap. That is, space can still
be saved by the ICAM.

4 CONSTRUCTION AND Lookup oF ICAM

In this section, we will discuss the algorithm to construct
and look up an ICAM efficiently.

4.1 Node Labels

The node label of the ICAM is an extension of that of the
CAM. Recall that the label of a node, ¢, in CAM, is of the
form (s%,dx), where % can be “4” or “—.” Let us refer to
such a label as L,(e). We use L(e) to denote the label of
node e in the integrated CAM (ICAM). It is of the form
(sz,dy), where x and y are operations in the given operation
hierarchy. The first part, sz, determines that the current
node is accessible for operation x by the user. And, the
second part, dy, denotes that the descendents of the current
node are accessible for operation y by the user unless
overruled by the label of a closer labeled ancestor.

For example, in Fig. 2¢c, the label of node F, (sw,dr),
means that node F is writable but its descendants can only
be read unless overruled by a closer labeled ancestor.

It is possible that operation = is denied at node e, but
permitted at a descendant of node e. In order to cope with
this general case, we extend the idea of the unit region from
[25] to the multioperation case. That is, we decompose the
tree into regions, such that within each region, for any
operation z, if = is permitted at node e in the XML tree, it is
also permitted at all the ancestors of e. We also call such a
region a unit region. We first define the label merging rule
and inducing rule based on one unit region. Then, we make
some modifications to cope with the general case.

4.2 ICAM Construction for a Unit Region

In this section, we will describe the algorithm of constructing
an ICAM in a unit region. There are many possible ICAMs,
but we aim at building a minimal one. The algorithm to
construct an ICAM consists of the following main steps:

1. For each atomic operation, label the XML tree
according to the algorithm in [25], except that when
encountering a neutral root, we choose a favorite
label by Rule 1 (see below), instead of assigning a
label arbitrarily. Construct CAMs for the atomic
operations. However, in this step, we do not remove
the redundant labels in the CAMs.

2. From the CAMs construct an ICAM.

Rule 1 (Favorite Label for the Neutral Root). Consider an
XML tree and operations x1, o, . . ., x,, and a topological sort
T1 > 19> ... > x,, based on the cover relation. In the
process of constructing C AM,,, if the root is neutral in terms
of x;, we label the root as follows: We construct CAMs in the

topological order of the operations, from x; to x,, 1) if 3z}, s.t.

x; immediately covers x;, let Ly, (root) = Ly, (root) and 2) else

L,,(root) = (s+,d+).

We follow the procedure to construct CAM, for each
operation z, except that we do not really delete the
redundant labels for z, instead they are marked with “D”
for “deleted.” The C AMs are actually maintained by storing
at each XML node a list of (label, delete_mark) pair, one pair
for each operation, where label is the label for an operation
and delete_mark is “D” or “Null.” Then, all of the XML
nodes whose labels are not all marked as “D” will form the
nodes in the ICAM. We merge the labels of such nodes
using the Label Merging Rule.

Rule 2 (Label Merging Rule (LMR)). Consider n different
operations, x1, X, . . ., Tn, and a topological sort of x1 > 9 >
... > x, based on the cover relation. The integrated label of a
node e in the ICAM is (sx,dy), where x is the smallest
operation covering all x;s such that L,,(e) = (s+,dx), and y
is the smallest operation covering all x;s such that
L, (e) = (s+,d+).

Note that if X = zy,x,,...x, includes all operations in
the corresponding operation hierarchy, then the minimal
operation covering all z;s such that L, (e) = (s+, d*) must
also be in set X and it must have a label of (s+, dx) for node
e. Similarly, the minimal operation covering all z;s such that
L,,(e) = (s+,d+) must be in X and have a label of (s+, d+)
for e. This is because if two or more operations are
accessible at the node, then an operation must exist in the
hierarchy which is the minimal operation covering these
operations and it must also be accessible. Also due to this
assumption, given a label (sz, dy) for node e in the ICAM, x
will not cover any operation, z;, such that L, (e) = (s—,d—).
And, y will not cover any operation z; such that
Lxry(e) = (8*7d_)'

‘The label merging step may introduce new redundant
labels. Since the labels in the ICAM are nonredundant in at
least one CAM, the only possibility of redundant labeling in
the ICAM is upward redundant labeling, whose definition
is given in Definition 5 below. It was first introduced by
[25], but multiple operations are considered here.

Definition 5 (Upward Redundant Label in an ICAM). A
label at node e in an ICAM I is said to be upward redundant
if e has an accessible proper descendant for each operation, and
for every child c of e, either c is labeled in I or ¢ is upward
redundant.

We remove the upward redundant labels while we
merge the labels by traversing the XML tree in postorder.
Note that for a CAM, only the upward redundant labels
without any labeled proper ancestor are removed. That is
because any node with upward redundant label and with
labeled proper ancestors are subsumed and deleted when
the subsumed labels are removed. However, for an ICAM, a
node is labeled after the merging step by LMR if it is not
subsumed in at least one CAM, thus when removing the
upward redundant labels, those with labeled ancestors
should also be considered. Fig. 4 describes the construction
of a minimal ICAM. By a minimal ICAM, we refer to an
ICAM with no redundant labeling due to subsumption or
upward redundancy. Here, we given an example to show
how a minimal ICAM is generated from CAMs by
Algorithm 1.



6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17,

NO. 7, JULY 2005

Step 1: Create CAMs for each operation

Mark the redundant labels with ‘D’;

Step 2: Merge the labels of each node

If it is upward redundant

Merge the labels by LMR

Algorithm 1: Constructing a Minimal ICAM in a Unit Region

For each atomic operation in the operation hierarchy

label each node and add the label to the label list;

Traverse the XML tree in postorder, and for each node

unlabel the node; (the node is not labeled in the ICAM)
Else if not all of the labels in its label list are marked ‘D’

Infer the labels of the composite operations.

Fig. 4. Constructing a minimal ICAM in a unit region.

Example 3. Suppose there is an XML tree, as shown in Fig. 1,
and the system supports two atomic operations, r(read)
and w(write), where w covers r. We also assume another
virtual operation, n, which denotes that no operation is
permitted at the node. The topological order of these
three operations is: w > r > n. Then, there are two steps
to construct an ICAM:

e  Step 1: For each atomic operation, we first label the
XML tree by (s*, dx), where “x” can be “+” or “-.”
Then, we mark the redundant labels. While C AM,
is being constructed, a neutral root (A4) is encoun-
tered. According to Rule 1,as CAM,, is constructed
first and L, (A) = (s+,d—) (A is accessible and
negative for w. Note that M is an internal terminal
node for w and is neither positive nor negative.
Hence, A has one neutral child (B) and two
negative children (U and b)), we choose (s+,d—)
for L,(A). As a result, a labeled XML tree is
obtained and each node in it maintains a label list.
For operation w, all the labels except those of of
A,C,F,Jand M are marked “D.” For operation r,
all the labels except those of A, B,C, N,Qand U are
marked “D.”

e  Step 2:Foreachnodein the XML tree, if notall of its
labels in the CAMs are marked “D,” we merge its
labels for every operation. In this example, for node
A, L,(A) = (s+,d—), and L,(A) = (s+,d—), thus
L(A) = (sw,dn). For node F, L,(F)= (s+,d-),
and L,(F) = (s+,d+). Although L,(F) is marked
“D” for operation 7, F' has to be labeled in the
ICAM, for it is not marked “D” for w. Then,
according to LMR, L(F') = (sw,dr). Labels of the
other nodes can be obtained in the same way.
During the label merging, we also find that node B
is upward redundant because B has an accessible
labeled descendant for both w and r, and all its
children are labeled. Thus, we delete the label of B.
The resulting ICAM is shown in Fig. 2c.

In the construction, the time needed for Step 1 is the
product of the number of atomic operations and the time for

constructing a CAM for one operation. As the time for
constructing a CAM is linear to the number of nodes in the
XML tree, and the number of the atomic operations can be
considered as a constant, the time complexity for Step 1 is O
(number of nodes in the XML tree). The time complexity of
Step 2 is also the same. Hence, the overall time for
constructing an ICAM is proportional to the number of
nodes in the XML tree.

If we refer to the number of nodes in a CAM/ICAM as the

size of the CAM/ICAM, then the following theorem holds.

Theorem 1. The size of ICAM is equal to or smaller than the total
size of CAMs for different operations.

Proof. As shown in the algorithm, in the process of the label
merging, we only consider any node which is not
marked as redundant in at least one CAM. In other
words, we only merge the labels of the nodes in the
CAMs. Thus, if the labeled nodes in all CAMs are
different, then the size of the ICAM is equal to the total
size of the CAMs, otherwise the size of the ICAM is
strictly smaller. O

Theorem 2. Given an XML tree and atomic operations

1,22, ..., &Tn, Cp,Coy,...Cy, are CAMs that label the root
by Rule 1. C, ,C, ,...,C', are CAMSs constructed in the
same way except that they may not follow Rule 1. Then, the

size of the ICAM generated from C,, C.,, ..., Cy, is no larger

than the one generated from C', ,C, ,...,C,, .
Theorem 3. Given n optimal CAMs,
CAM,,,CAM,,,...,CAM, ,

the ICAM generated by Algorithm 1 is minimal (in the
number of nodes) in that no redundant node remains.

The proofs of the above theorems are given in the full
version of this paper in [18].



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 7

4.3 ICAM Lookup in a Unit Region

In this section, we describe the algorithm of looking up an
ICAM in a unit region. The following lemma is essential for
this purpose.

Lemma 1. In a unit region, if the integrated label of a node e is
(sx,dy), then x > y.

Proof. Note that z and y are both permitted at e (in a unit
region, if y is permitted at descendants of e, y is also
permitted at e). According to LMR, x > y, since z is the
minimal operation covering all operations permitted at e
in the CAMs. O

Given a label in the ICAM, the label of a node in terms of
an operation can be induced by the Label Inducing Rule.

Rule 3 (Label Inducing Rule (LIR)). Given an ICAM and a
node e in the corresponding XML tree, the induced label
IL,(e) for operation z is determined according to the following
rule:

1. If e is labeled in the ICAM, and L(e) = (sx,dy)

o ify>z then IL,(e) = (s+,d+),
o celseif x > z then IL,(e) = (s+,d—), and
o clse IL,(e) = (s—,d—).
2. Else, suppose f is the nearest labeled ancestor of e in
the ICAM if any, and L(f) = (sz, dy)

o ify>z then IL,(e) = (s+,d+),
o celseif (x> z), then

- if e has a labeled descendant, p, in the
ICAM, labeled (sm,dn), and (m > z),
then IL,(e) = (s+,d—) and
- else IL.(e) = (s—,d—).
o clse IL,(e) = (s—,d—).
3. Else if e has no labeled ancestor, IL.(e) = (s+,d—).

Example 4. Consider the ICAM in Fig. 2c as an example.
Suppose IL,.(F) is requested. Because F' is labeled in the
ICAM, L(F)=(sw,dr) and r>r, IL.(F)=(s+,d+)
according to the LIR. If IL,(B) is requested, we should
locate its nearest labeled ancestor first. It is A and
L(A) = (sw, dn). Because w > r, but =(n > r), we need to
check if B has any labeled descendant. We find C' and
L(C) = (sw,dn). So, we get IL,(B) = (s+,d—) by LIR.

Note that the d part of IL,(B) and L,(B) are not equal.
After the ICAM is constructed from LMR, and before the
upward redundant labels are deleted, B should be labeled
in the ICAM. In this ICAM, L(B) = (sw,dr). Then, IL,(B) =
(s+,d+) by LIR, which equals L,(B), as induced from
CAM,. When upward redundant labels are removed,
IL,(B) becomes (s+,d—). However, the d part of such an
induced label does not affect the correct accessibility
deduction for the other nodes. This is because the children
of an upward redundant node are either labeled or upward
redundant in the ICAM. The following theorem, which is
proven in [18], makes sure that LIR is correct.

Theorem 4. Suppose an ICAM, C, is generated by LMR for the
operations xy,xs, . .., T,, where upward redundant labels are
not removed. Given a node e in the corresponding XML tree,

its induced label for operation x; in C is the same as its
induced label in CAM,,.

After an induced label is obtained, the accessibility of the
node is easily deduced, as in [25]. In particular, given a node
eand IL,(e), the accessibility of e in terms of the operation z
can be determined as follows: 1) If IL(e) = (s+, dx), “*” can
be “+” or “—,” then e is accessible. 2) Else e is inaccessible.
The following lemma is proved in [18].

Lemma 2. The accessibilities of the nodes in an XML tree can be
correctly induced from the ICAM generated by Algorithm 1.

The lookup algorithm for the ICAM in a unit region aims
at inducing the label for a requested operation for a
requested node, which can be derived by following the
steps outlined in the LIR rule. If we store the ICAM as a trie
as suggested in [25], i.e., each node is identified by a string
which is a prefix of the identifier of its descendants, then the
time complexity of this lookup algorithm is O (depth of the
requested node in the XML tree x log(size of the ICAM)) [25]. In
Section 5, we propose a mechanism to enhance the
performance of the lookup algorithm.

4.4 Construction and Lookup for Multiunit Regions
In the CAM for a single operation with multiple unit
regions, there exists some accessible node with an inacces-
sible parent. This node is called a marker node, and the
inaccessible parent is called an interregion terminal node,
IRT for short [25]. In an ICAM, this situation also exists. We
extend the definition of marker nodes. A marker node for
an operation x refers to a node at which x is permitted but
denied at its parent. We call an XML tree with at least one
marker node a Multiunit Region. In this case, the
construction and lookup algorithm need some modification.

According to the construction algorithm of multiunit
regions in [25], the parent of a marker node is never labeled
in the CAM. That means the label (s—, d+) is not allowed in
the CAM. We make similar restriction by enforcing
Lemma 1 on the labels of the ICAM.

The basic idea of constructing a CAM in multiunit
regions is to decompose the tree into several unit regions
and reduce the tree in each individual region. Then, we
combine the labels in each region to form a CAM, in which
the marker nodes are marked. We adopt a similar idea, with
some augmentation:

1. Label the IRT as (s—,d—). As a result, the Label
Merging Rule (LMR) can still be applied in multiunit
region case.

2. The marker nodes should be identified in the ICAM
with the proper operation identifier. Even if its label
is upward redundant, it will not be removed.

As for the lookup algorithm, there are details that are
worth noting. Suppose we look for the accessibility of node e
for operation z, and e is not labeled in the ICAM, nor is it a
marker node. Suppose f is the nearest labeled ancestor, if
any, of e in the ICAM, and L(f) = (sz, dy):

1. If fis an IRT for operation z, L.(f) = (s—,d—) as
we have mentioned above. Then, after merging
the labels, we have y<z and xz <z Thus,
IL,(e) = (s—,d—). On the other hand, L.(e)=
(s—,d—) as it is a nonmarker descendant of an



IRT for operation z. Hence, the accessibility of e
can be correctly induced in this special case.

2. If e has no labeled ancestor, or L(f) satisfies = > z
and —(y > z), we have to check whether e has a
nonmarker nearest labeled descendant with label
(sm,dn) and m >z If it does, e is accessible,
otherwise, e is inaccessible in terms of operation z.

3. If fis the nearest labeled ancestor of e and y > z, we
have to further check whether e is an descendant of
an IRT for operation z. That is, among the children of
f in the ICAM, we look for d, which is a marker for
operation z and whose parent is the ancestor-or-self
of e. If there is such a d, meaning e is a descendant of
an IRT for z, then e is inaccessible, otherwise it is
accessible in terms of operation z.

Items 2 and 3 are mentioned in [25], while item 1 is
special for ICAM because an IRT is not labeled and cannot
be the nearest labeled ancestor of any node in a CAM.

Using similar data representation as in [25], the time
complexity of this algorithm is O (depth of the requested node
in XML tree x logarithm (size of ICAM)).

5 EFFICIENT LOOKUP

In this section, we propose an efficient way of lookup, which
can be applied to both CAMs and ICAMs. By adopting a
proper numbering scheme for the XML tree and creating
indexes for both the XML tree and the CAM/ICAM, our
lookup algorithm is more efficient than that of [25].

5.1 Numbering Scheme

One of the keys of the accessibility lookup is the
determination of ancestor-descendant relationship, which
can be assisted by a proper node identifier scheme. There
are several methods to identify nodes in an XML tree. Yu et
al. [25] adopts a scheme similar to the Dewey notation.
Hence, the ancestor-descendant relation determination
involves comparing two strings, which is time consuming.
We apply a numbering scheme to represent nodes in an
XML tree and the ICAM. To every node in the XML tree we
assign a 5-tuple (nodeinfo) and store it as an attribute of that
node in the XML tree. The 5-tuple is (level_num, level_order,
parent_order, pre_order, range), where:

1. level_num: the level of the node. The root belongs to
level 0.

2. level_order: the left to right order of the node on its
level. Also begins with 0.

3. parent_order: the preorder number of the direct

parent of the node.

4. pre_order: the preorder number of the node.

5. range: the number of descendants of the node.

Fig. 1 shows an example XML tree with nodeinfo(we omit
some nodeinfos due to space limitations). Among these five
numbers, level_num, pre_order, and range are similar to
those of the numbering scheme proposed by [16].° Using
these three numbers, the structural relation between two
nodes can be determined in constant time according to a
lemma in [16]. In our case, given two nodes, x and y, with

6. It is easy to extend to a duration numbering scheme [16] with an
extended preorder to accommodate future insertions. Since we do not
discuss the update of CAM and ICAM, using preorder is convenient for
illustrating our idea.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

Node_Info Access_Label ptrChildren
0 (0,0,0,0,30) (sw,dn) (1,2,3,4,7)
1 (2,0,1,2,2) (sw,dn) NULL
2 (2,1,1,5,3) (sw,dr) NULL
3 (2,2,1,9,2) (sw,dr) NULL
4 (1,1,0,12,8) (sw,dn) (5,6)
5 (2,3,12,13,2) (sr,dr) NULL
6 (2,4,12,16,2) (sr,dn) NULL
7 (1,2,0,21,6) (sr,dn) NULL

Fig. 5. The logical table structure of an ICAM.

zinfo and yinfo as their 5-tuple node info, respectively, then
x is y's ancestor iff

xinfo.pre_order < yinfo.pre_order < xinfo.pre_order

+ xin fo.range.

Also, if xinfo.level number = yin fo.level_number — 1, then
z is the parent of y.

5.2 Storage Mechanism of ICAM

Suppose an ICAM is created for a user or user-group for the
original XML tree. It is stored as a table. Here, we use an
example to explain the mechanism. Suppose we want to
create an accessibility map for user A for an XML tree T.
The XML tree as well as the accessibility information is
shown in Fig. 1 and the ICAM of that tree is shown in
Fig. 2c. Fig. 5 shows a table for the logical structure of the
ICAM and also the example data. Each row in the table
corresponds to a node in the ICAM. It has three elements:
Node_In fo is the assigned 5-tuple of the node, Access_Label
records the accessibility information, i.e., the label in the
ICAM, while ptrChildren contains the pointers to its direct
children in the ICAM. (In practice, in order to avoid
variable length arrays, two pointers can be used instead of a
list of child pointers, one of which points to the first child
and the other to the next sibling.)

5.3 Indexes on the XML Tree and the ICAM

Indexes are created to quickly locate nodes in an XML tree
and the ICAM:

1. We create an index array on the source XML tree.
The method flattens the XML tree by traversing it in
preorder, and an array (Index_Arr) is built. The ith
element of the array has a pointer pointing to the ith
node in the XML tree in preorder. Thus, as long as
the preorder of a node is known, we can locate the
node and get its nodeinfo in constant time. Using the
parent_order, combined with the index array of the
XML tree, we can traverse from the node to the root
of the XML tree in a time proportional to the depth
of the node.

2. A 2-ayer hash index” is created on the two elements
of nodeinfo, level_num, and level_order, to quickly
locate entries in the ICAM. We first hash the nodes
on the same level of the XML tree into one bucket.

7. Note that we could have hashed on one layer only, e.g., if we only hash
on the preorder, then there is no need of the level-order. But, in the case
when ICAM is much smaller than the XML tree, there may be a lot of empty
buckets using a one layer hash index. By using a 2-layer hash index, we can
adjust the number of entries of the second layer, which will save some
space.



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 9

f=e
while (f # NULL )
By = hi(f.nodeinfo[l]) ;
if By is not empty
Bo = ho(f.nodeinfo[2]);
if B2 is not empty, return f;
f = Index Arr[fnodeinfo[3]];

Algorithm 2: Locate the nearest labeled ancestor of a requested node
let e be the requested node, let f be its nearest labeled ancestor;

% hash on level number
% hash on level order

Yoget parent order

Fig. 6. Locate the nearest labeled ancestor of a requested node.

The level of a node can be obtained by the first
element of its 5-tuple nodeinfo. If hy is the hashing
function, we have:

FirstLayer Bucket Number(z) = hy(z.nodeinfo[l]).

Let z be a node in the ICAM with the highest
level_num. Then, the total number of buckets of the first
layer of hashing is z.nodeinfo[l] + 1, which is equal to
Maximum_ICAM _Level. For example, for the ICAM
stored in Fig. 5, it is 3.

Then in each bucket, we further hash the node according
to its order among its siblings. The second layer hash
function hy gives

SecondLayer Bucket Number(x) = ha(xz.nodein fo[2]).

The hash table allows a constant average lookup time
given sufficient storage space. There is a trade off between
speed and space. We can adjust the hash function to reduce
the number of empty buckets, while maintaining efficient
lookup time. Assisted by the above two indexes, the nearest
labeled ancestor of a requested node can be located in time
proportional to the depth of the requested node. Fig. 6
describes the procedure.

5.4 Storing the “Cover” Relation in an Operation
Hierarchy

A “cover” matrix, M, is created based on the operation
hierarchy in order to determine the “cover” relation
between two operations. It is an n x n matrix, where n is
the number of operations, including atomic and composite
operations. M][i, j] = 1 iff operation i covers j. In this way,
the “cover” relation between two operations can be
determined in constant time.

Next, we will discuss how to determine a node’s
accessibility efficiently.

5.5 Lookup of the Accessibility Information

In this section, we explain our lookup algorithm. The key of
determining a given node’s accessibility is to compute its
induced label. Here, we use ICAMs as an example, but note
that our algorithm and the following discussion are also
applicable to CAMs. The first step of computing the
induced label is to locate the nearest labeled ancestor,
which is described in Fig. 6. Then, LIR is followed. We give
an example to illustrate the procedure.

Example 5. Suppose a request arrives, say an operation w at
node T in the XML tree (Fig. 1). We determine its
accessibility in the following way:

1. If the nodeinfo of the node is stored with the
node in the XML tree, then we can get the
nodeinfo of the requested node (i.e., T') directly.
Let T.nodeinfo = (2,5,12,19,1).

2. Calculate the first layer hash function to get to the
first layer bucket. We find that

2 < Mazximum_ICAM _Level.

That means that 7" may be labeled in ICAM.
Further, hash it by its level_order, that is 5. We
find out that it is not labeled in the ICAM, for the
number 5 bucket in the second layer is empty.

3. Get the parent of node T by T.nodeinfo[3], the
preorder number of 7”s parent. Given this
number, we can make use of the index array
(Index_Arr) to locate the parent in constant time
and obtain the nodeinfo of T’s parent, i.e., M. And
M nodeinfo = (1,1,0,12,8).

4. By calculating the value of the first layer hash
function for M, we find that it should appear in
the first bucket of the hash table. Further,
calculate the second layer hash function to locate
M in the first bucket. Thus, we get the entry of M
in the ICAM table. L(M) = (sw, dn). As =(n > w),
we need to find out whether T has a labeled
descendant.

5. From the ptrChildren field of the M entry, we
know that M has two direct children in the ICAM,
that is, N and Q. N.nodeinfo = (2,3,12,13,2) and
Q.nodeinfo = (2,4,12,16, 2). Both of them are not
the descendants of T, for 13 and 16 do not fall in
the range of (19, 20]. We know that if 7" were an
ancestor of IV, it should satisfy the inequality:

T .nodeinfo.pre_order < N.nodeinfo.pre_order
< T.nodeinfo.pre_order

+ T.nodeinfo.range.

So does (). Therefore, we deduce that T has
no accessible descendants. Hence by LIR,
IL,(T) = (s—,d—). So, we know that T is
inaccessible in terms of operation w.



10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

5.6 Time Complexity

We state in this section the results concerning the time
complexity of the algorithm for looking up a node in the
ICAM.

1. The time needed to assign the nodeinfo to nodes. This
is done only once for every XML tree. The time is
proportional to the number of nodes in the XML
tree.

2. The time to construct the ICAM. The time is
proportional to the XML tree size (number of nodes
in the XML tree [25]).

3. The lookup time. Since the requests may be frequent
and the users may not want to wait a long time for
the results, this is the time we try to reduce. There
are two components: 1) The time needed for looking
up a requested node’s nearest labeled ancestor in the
ICAM. It is proportional to the number of levels in
the XML tree between the requested node and its
nearest labeled ancestor in the ICAM. 2) For a CAM,
the label for an operation is obtained directly. While
for an ICAM, the label for an operation is induced
from the ICAM as well as from the cover relation
between the two operations. But based on the cover
matrix for the operation hierarchy, the cover relation
between two operations can be determined in
constant time, implying the label for an operation
can be induced in constant time given the label in the
ICAM. If the label of the nearest labeled ancestor is
(sz,dy) and z >z but —(y > z), or the requested
node has no labeled ancestor, we need to determine
if the requested node has any accessible descen-
dants. So, we have to search in the children of this
labeled ancestor in the ICAM, or the roots of the
ICAM if no labeled ancestor exists, to see if there
exist any descendants of the requested node with
label (sm,dn) and m > z. It will take time propor-
tional to the fanout of the requested node’s nearest
labeled ancestor in the ICAM.

Lemma 3. The overall time of lookup is O (depth of the requested
node in the XML tree + the maximum fanout of CAM/
ICAM).

But, if we sort the children of each node in the ICAM by
their preorder numbers, the time complexity will be
reduced to be the logarithm of the fanout. This is because
we can determine the range of preorder numbers for
descendants of the requested node and we can search the
sorted list by binary search in logarithmic time.

Lemma 4. If the child-pointers of each ICAM node are sorted, the
overall time of lookup is O (depth of the requested node in the
XML tree + log(the maximum fanout of CAM/ICAM)).

Compared with the time complexity of [25], which is O
(depth of the requested node in XML tree x log(CAM/ICAM
size)), the proposed algorithm has a much lower complexity.

5.7 Space Requirement

We now discuss how we measure the space for CAM/
ICAM. It includes the space for the CAM/ICAM, its hash
index, and the index on the original XML tree.

The space needed for CAM/ICAM is the number of
nodes in CAM/ICAM times the number of bits needed for
each node, which includes the node identifier, the label, and
the necessary pointers. For the node identifier, if we adopt
the 5-tuple nodeinfo as the node identifier, 4 bytes for each
number, then a total of 20 bytes are needed.’®

Pointers are needed to link the nodes in the CAM/
ICAM. In practice, for each node two pointers are
maintained, one linking to its first child, the other to its
right sibling. Assuming that each pointer requires 4 bytes,
then 8 bytes are needed for storing the pointers of each node
in the CAM/ICAM.

As for the label, in a CAM, three bits are enough for a
label, one for the “s” part, one for the “d” part, and the third
one for a marker. While in an ICAM, the number of the bits
needed for each part of a label depends on the number of
operations. For example, in the hierarchy in Fig. 3d, there
are eight operations, R, U, D, I, UD, Ul, DI, UDI. Thus,
three bits are needed to distinguish them. The “s” and “d”
parts require three bits each. (In general, for n operations,
we need log n bits each.) We also need to indicate whether a
node is a marker for an operation or not. One marker bit has
to be assigned to each atomic operation, i.e., four bits are
needed in total.

In other words, if we adopt 5-tuple nodeinfo for both
CAM and ICAM. The number of the bits needed for each
node in CAM/ICAM is given by the following equations:

CAM: (20 x 8)+ (8 x 8) +3=227(bit), (1)

ICAM : (20 x 8) + (8 x 8) + (3 x 2) + 4 = 234(bit).

(2)

The size of the hash index is affected by two factors: the
size of the CAM/ICAM and the distribution of nodes in the
CAM/ICAM. The number of nonempty buckets is bounded
by the level of ICAM times the maximum number of the
nodes on one level. Note that for the CAM, each hash index
has be to created for each operation. But, the ICAM requires
only one hash index. The index array of the original XML
tree, which is stored outside the XML tree, takes the space
proportional to the number of nodes in the XML tree. These
indexes are used to speed up the lookup. The same
algorithm can also be applied to the CAM.

6 EXTENSION oF ICAM

To further reduce lookup time, we can add nodes into the
ICAM. After constructing the ICAM, do one more traversal
of the ICAM. If we observe that the XML level between the
parent and the child in the ICAM is bigger than a certain
threshold, we can add more nodes on this path simply by
reinserting the deleted nodes. We call the resulting ICAM as
Extended ICAM (EICAM). The size of EICAM is controlled
by the value of the threshold.

8. If we use the method of [25], the length of a node identifier depends on
the depth of the node. Take a full binary XML tree as an example, the
average length of the identifier can be computed by 5> ix 21,
where k denotes the level of the tree beginning from 1. For a 18-level binary
tree, the average length of the node identifier is 17. Using 4 bytes for each
symbol, then, on average, 68 bytes are needed to identify a node, which is
much longer.



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 11

Lemma 5. EICAM represents the same accessibility as the
original ICAM.

Proof. Here, we prove that for any CAM., labels of the other
nodes can still be correctly induced after adding back an
induced label [ (the resulting CAM is denoted by CAM.).
For we have proven in Theorem 3 that after the label
merging, the labels of the nodes for an operation can be
correctly induced.

Thus, given an unlabeled node e, we prove that the
induced label L.(e) in CAM, equals to the induced label
L' (e) in CAM!. Let f and g denote the nearest labeled
ancestor and descendant of e in CAM,, respectively, if
any. Adding ! to CAM. can affect the induced label of e
only if ! becomes e’s nearest labeled ancestor or
descendant in CAM..

Case 1. [ is the nearest labeled ancestor of e in CAM..

If L.(f) = (s+,d+) (or (s—,d—), respectively), accord-
ing to Definition 3, L.(I) = L.(e) = (s+,d+) (or (s—,d—),
respectively). On the other hand, in CAM, since L/(I) =
(s+,d+) (or (s—,d—), respectively), L.(e) = (s+,d+) (or
(s—,d—), respectively), equals to L. (e).

If L.(f) = (s+,d—) or no f exists, L.(e) and L,(I) can
be (s+,d—) or (s—,d—), depending on whether e and [
have an accessible descendant. If there is such g with label
(s+,dx), L.(e) = L.(I) = (s+,d—) = L’(I). And, it is ob-
vious that L (e) also equals (s+, d—) in this case. If there is
no such g, L.(e) = L.(l) = (s—,d—) = L’(l). Then, in
CAM., since L' (l) = (s—,d—), L (e) = (s—,d—) = L.(e).

Case 2. | is the nearest labeled descendant of e in
CAM..

If L.(f) = (s+,d+) (or (s—,d—), respectively), L.(e) =
L' (e) = (s+,d+) (or (s—,d—), respectively) irrespective
of its labeled descendants.

If L.(f) = (s+,d—) or no such f. If e has a nearest
labeled descendant, say g, in CAM.. It should also be the
nearest labeled descendant of I, otherwise, it should be
the label of g that we have reinserted, instead of I. Thus, if
L.(9) = (s+,d*), L.(e)=L.(l) = (s+,d—)=L.(l). Tt is
obvious that in this case, L’ (e) = (s+,d—), too. If e has
no such g in CAM,, | does not either. Thus,

L.(e) = L.(l) = (s—,d—).

Then in CAM., L(e) = (s—,d—).
Therefore, the label of e can still be correctly induced
in CAM.. O

In this way, we can further reduce the time for looking
up the nearest labeled ancestor to the value of threshold. It
is the trade off between the space and the lookup time.

Lemma 6. The lookup time of the EICAM is independent of the
depth of the node in the XML tree.

Proof. As discussed in Section 5.6, looking up a node in an
ICAM involves locating the nearest labeled ancestor and
descendants. In the ICAM, locating the nearest labeled
ancestor is linear to the depth of the requested node.
While in the EICAM, by adding back an induced label,
the number of the nodes on the path from the nearest
labeled ancestor of the requested node to the requested
node in the XML tree is upper bounded by the threshold,
i.e., irrespective of the depth of the node. While the time

complexity of looking for a nearest label descendant is
still O(log(maximum fanout of EICAM)). In other words,
looking up a node in the EICAM is independent of the
depth of the node in the XML tree. 0

7 EXPERIMENTAL RESULTS

We have conducted experiments to show how the use of
ICAM can help reduce the storage size of the accessibility
maps and verify the efficiency of our lookup algorithm. All
the experiments are conducted on a SUN Enterprise E4500,
running Solaris 7 and having 8G RAM. The synthetic XML
data is generated by the IBM XMLGenerator [9]. There are
several parameters in the XMLGenerator to control the size,
the depth, and the breadth (i.e., the average number of nodes
on one level) of the input XML tree. As a result, we can verify
our algorithms on the XML trees of different sizes and shapes.
The real data is the accessibility control information of the
Unix file system of a big university. We report here the
experiments we conducted to test space efficiency as well as
the construction and lookup time complexities of CAM,
ICAM, and the full materialized map (FMM). The full
materialized map is the accessibility map containing all the
accessible nodes and no inaccessible node while maintaining
the structural relationship among the nodes.

We adopt two mechanisms for node identity, one is the
trie mechanism, as is used for CAM in [25]; the other is the
numbering scheme we described in Section 5.1. We refer to
these two kinds of CAMs as CAM_T (T stands for TRIE),
and CAM_N (N stands for numbering scheme), respec-
tively. Similarly, we distinguish between FMM_T and
FMM_N. We adopt the operation hierarchy in Fig. 3d in
the experiments and use the encoding method to represent
the operations. Note that only the CAMs for the atomic
operations are built for CAM_N, CAM_T, or ICAM.

7.1 Experiments on Space Efficiency

In the experiments on space efficiency, we use the same set
of synthetic data as in [25]. The parameters used in the
experiments are as follows: the total number of nodes in the
XML tree is 16,811, fanout is varied from 1 to 60 and has an
average value of 2 (not including the leaves), and the
average depth of the tree is 8. We also adopt parameters
from [25] to control the accessibility ratio and access
locality. They call a node friendly if the nodes in the subtree
rooted at that node have a high probability of being
accessible. The subtree rooted at this root is called a friendly
area. Otherwise, the node is called nonfriendly and the
subtree rooted at the node is a nonfriendly area. The related
parameters are:

1. af/anf: The access probability of a node in a friendly/
nonfriendly area. In the experiments, we set these two
parameters to be 98 percent and 2 percent, respec-
tively, as in [25], to obtain high structural accessi-
bility locality.

2. fr/rr: The friendly ratio/reverse Ratio. It is the prob-
ability that a node is a friendly/nonfriendly node given
that its parent is a nonfriendly/friendly node. We have
to keep fr small in order to achieve high access
locality. In the experiments, we set it to be 5 percent.
While rr is varied to control the accessibility ratio. In
the experiment, we vary rr from 0 percent to 100
percent. These settings are also followed in [25].



12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

Compress Ratio

ar=0.9

+
ar—06 X
ar=03 3

02 04 06 08
Accessibility Inheritance Probability

(a)

Fig. 7. Results about Compress Ratio.

3. ar: The accessibility ratio (ar) is given by 1 — rr. This
factor is an indication of the amount of nodes that
are accessible in the XML tree.

Besides the above parameters, we adopt another para-
meter to simulate the accessibility distribution among the
nodes. We called it Accessibility Inheritance Probability
(aip). It is defined as follows: Given an XML tree and a node
e in the tree, for two different operations, « and y, where
x > y, suppose y is permitted at e, then aip is a conditional
probability that x is also permitted at e. In the experiment,
we vary aip from 0 percent to 100 percent to get various
different accessibility similarities among the operations.

We generate the accessibility information of the data as
follows: Considering an operation hierarchy in Figs. 3b, 3c,
and 3d, af/anf, fr/rr, and ar are to determine whether a
node is accessible for R. We call the nodes that are
accessible at least for R as accessible nodes. Then, among all
the accessible nodes, aip is used to control the accessibility
probability of the other operations in the operation
hierarchy. Hence, we keep fr low to achieve high access
locality for R. For the other operations, U, I, and D, their
access probabilities are controlled by aip, and the access
locality is not guaranteed.

The hierarchy in Fig. 3a is for the experiments on the
Unix file system data only. As the accessibility information
is already there, we do not need the above parameters to
generate the accessibility information.

In the experiments, we use the same definition of
Compress Ratio as that in [25].

Definition 6 (Compress Ratio). The Compress Ratio (CR) of
an ICAM is defined by the following equation:

- Size of(ICAM)
" Total number of accessible nodes’

CR

®3)

The size of a CAM or an ICAM is given by the number of
nodes in the CAM and ICAM, respectively. We also define
the term Gain Ratio, which is used to measure the space
saved by combining all CAMs into one ICAM.

Definition 7 (Gain Ratio). The Gain Ratio (GR) of an ICAM
integrated from CAM,, ... CAM,, is defined by the following
equation:

I 2 e
» =N %

Compress Ratio

e
%)

aip=03 4
aip-0.6 X
aip—0.9
0.2 0.4 0.6 08 1
Accessibility Ratio

(b)

S BitsOf(CAM,) — BitsOf(ICAM)
GR == !
> BitsOf (CAMj)

n
k=1

The BitsOf() function computes the product of the
number of nodes in CAM/ICAM and the number of bits
of each node. The latter part is determined by (1) and (2),
respectively (see Section 5.7). Since the numbering scheme
has obvious advantages, from both complexity analysis
and empirical studies in construction time and accessi-
bility lookup (see results in this section), we assume that
both CAM and ICAM adopt the 5-tuple nodeinfo as
identifiers when calculating the Gain Ratio, i.e, CAM_N
is considered here.

Compress ratio and gain ratio are two target measure-
ments in our experiments. We study the influence of
various parameters on these two ratios. There are several
conditions that may affect these two targets: access locality,
accessibility ratio, similarities among the CAMs for differ-
ent operations and the size and shape of the operation
hierarchy.

7.1.1 Compress Ratio

In this section, we will discuss how the above parameters
affect the compress ratio.

Compress Ratio Versus Accessibility Inheritance Prob-
ability. Accessibility Ratio (ar) is fixed at 30 percent,
60 percent, and 90 percent, representing small, medium,
and high accessibility ratio, respectively. aip is varied from
0 percent to 100 percent. The result is shown in Fig. 7a.
From the figure, we observe that CR increases when aip
increases. That is because when aip increases, the number of
nodes that are permitted to do the operations on the second
layer or above, i.e., operation U, I, and D, increases, too.
That leads to much increase in the number of nodes labeled
in the ICAM. Meanwhile, the number of accessible nodes
remains unchanged, hence, the compress ratio increases.

Compress Ratio Versus Accessibility Ratio. aip is fixed
at 30 percent, 60 percent, and 90 percent, representing
small, medium, and high accessibility inheritance prob-
ability, respectively. And, ar is varied from 0 percent to
100 percent. The result is shown in Fig. 7b. The result shows
that CR decreases with the increasing of ar.



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS

0. 0.6

13

0.7
0.5 05
0.6
=] L o =)
504 S04 =]
] S S 05
= ~ K %
g = g
‘503 -5 0.5 304
&) ] &)
03
02 0.2
0.2
0.1 ar=0.9 + 0.1 aip 03 4 0.1
ar=0.6 X aip = 0.6 X slim operation hicrarchy +
o ar 03 ¥ ) aip=0.9 % 0 flat operation hicrarchy

02 04 0.6 08 1
Accessibility Inheritance Probability

=)

0.2 0.4

(a)
Fig. 8. Results about gain ratio.

7.1.2 Gain Ratio

This section lists the result of the experiments on gain ratio.

Gain Ratio Versus Accessibility Inheritance Probability.
ar is fixed at 30 percent, 60 percent, and 90 percent,
respectively, representing small, medium, and high accessi-
bility ratio. The value of aip is varied from 0 percent to
100 percent. The result is shown in Fig. 8a. From the figure we
observe that GR increases as aip increases. That means the
higher the accessibility inheritance probability, the more
space is saved by ICAM. The highest gain ratio achieved is
near 0.6, meaning that close to 60 percent of the space is saved.

Gain Ratio Versus Accessibility Ratio. The value of aip
is fixed at 30 percent, 60 percent, and 90 percent,
representing small, medium, and high accessibility inheri-
tance probability, respectively. ar is varied from 0 percent to
100 percent. The result is shown in Fig. 8b. The result shows
that the gain ratio changes little with the accessibility ratio.
That means the accessibility ratio has little effect on the
space saved by ICAM.

Gain Ratio Versus the Shape of the Operation Hier-
archy. This experiment shows the influence of the shape of
operation hierarchy to the gain ratio. Here, we compare the
gain ratio when the system supports the operation
hierarchy of Figs. 3b and 3d, respectively. Due to page
limitation, we only list the result in the case of the medium
accessibility ratio (ar = 60 percent). As plotted in Fig. 8c, the
gain ratio of the slim hierarchy increases faster with aip
than that of the flat hierarchy. Because the slimmer the
hierarchy, the higher the probability of the overlapping of
the CAMs, which leads to greater gain ratio.

7.2 Construction Time

Experiments are conducted to compare the construction
time of CAM_N, CAM_T, and ICAM. The construction of a
CAM or an ICAM includes two processes, constructing and
storing. When creating an ICAM for several operations, the
merging and storing of labels is done only once for all
operations. While to construct several CAMs, the storing
process has to be done once for each operation.

In order to maintain the structural relationship among
the nodes in the CAM and ICAM, the descendant-ancestor
relationship of two nodes has to be determined when
linking the nodes, and the efficiency of this step greatly
affects the construction time. If the trie scheme is used to
encode node identifier, the determination takes much
longer time because of string comparison. While the time
complexity becomes constant if the numbering scheme is

Accessibility Ratio

06 o8 0 02 0.4 0.6
Accessibility Inheritance Probability

08 1

(b) (c)

used. That is why the construction time of CAM_T is longer
than those of CAM_N and ICAM, as the results of the
experiments show.

We conduct the experiments under several situations.
But, due to space limitation, we only show the results with
the following settings: ar=60 percent, fr=5 percent,
af=98 percent, anf=2 percent, and aip=60 percent. In other
words, the following results are for the case of medium
accessibility ratio, access locality, and accessibility inheri-
tance probability.

XML trees of different sizes are generated by the IBM
XMLGenerator. We compare the average construction time
of CAM_N, CAM_T, and ICAM for four operations. The
results are given in Fig. 9. The results show that the ICAM
and CAM_N are constructed more than two times faster
than CAM_T. The construction time is linear to the size of
the XML tree. Label merging and storing do not cost extra
overhead when constructing an ICAM. The experimental
results confirm the earlier performance claims.

7.3 Experiments on Accessibility Lookup

In this section, we present the experiments and their results
to verify the performance claims on the lookup. The same
data set as in Section 7.1 is used for these experiments.
The parameters for controlling accessibility assignment
are set as in the previous experiments on construction time.
First, we apply our numbering scheme and indexes to the
CAM (CAM_N) and compare the lookup time of our
algorithm with that of the original CAM (CAM_T). The

1800} ICAM 4
CcAMy X
1600 CAMT []

=
s
3

= 12001

average construction time(ms)
£ & & ¢

S
=1
S

6000 8000 10000 12000 14000 16000

Size of XML tree

Fig. 9. Construction time for four operations.



14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.7, JULY 2005

0.35

average lookup time(ms)
average lookup time(ms)

2 3 6 B 0 2 )
level of the requested node in the XML tree

(a)

Fig. 10. The average lookup time.

result, as shown in Fig. 10a, verifies that our lookup
algorithm is much more efficient. As a result, we only
consider the case of using numbering scheme in the
following experiments.

Then, we examine the effects of integrating multiple
operations. We first test the average lookup time when the
user asks for only one operation. Fig. 10b shows the average
lookup time of each level of an XML tree. The result shows
that merging labels in the ICAM does not cost extra time
when a user wants to look up only one operation. And, the
lookup in both CAM and ICAM are faster than that in
FMM_N. Because when looking up in the ICAM/CAM,
most searching stops once a labeled ancestor is found. But,
the lookup in an FMM usually needs to travel the whole
path from the root to the requested node if accessible or to
one of its descendants if inaccessible. The average lookup
time for the nodes at level one in the ICAM/CAM is larger
because there are many more labeled nodes at that level.

The third experiment shows the average lookup time of
CAM_N and ICAM for two operations. As illustrated in
Fig. 10c, the ICAM is optimal when the user wants to
lookup multiple operations, for the nearest labeled ancestor
has to be located only once.

7.4 Experiments on Real Data Set

We also conduct the experiments on a real data set. The
data set is the UNIX file system data, which has the similar
structural and accessibility characteristic with the XML
data. Our data is obtained from an existing system of the
computer science department of the Chinese University of
Hong Kong. It has 408,561 nodes and 271 users. The
maximum fanout of the file structure is 3,033 and the
average is 15. The maximum depth is 15 and the average is
7. We assume that the three operations, read(r), write(w),
and ezecute(x), form an operation hierarchy shown in
Fig. 3a. We construct the ICAM and CAM_Ns on the data.
The average compress ratio of the ICAM is 0.3 and the
average gain ratio of ICAM over CAM_N is 20 percent. The
gain ratio is not very big. As the file system has high
accessibility locality, the compress ratios of the CAMs are
good. Hence, the gain of the ICAM over the CAMs is not
that much. But, it still saves about 20 percent space. We also
compare their construction time and lookup time. The
average construction time of the CAM_N for the three
operations is about 135.5 seconds, and that for the ICAM is
only about 81.7 seconds. Fig. 11 plots the lookup time of two
operations in the ICAM and CAMs, respectively. It shows

level of the requested node in the XML tree

016
% 0.4
£
2 0.12
£
=
2 o1
3
3
3 0.08
[
8 006
v
>
® 0.04
cAmy +
ICAM ™ XX 002 IcAM +
MMy [ 0 CAMN X
6 8 0 P ) 6 8 0

level of the requested node in the XML tree

(b) (c)

that the lookup in the ICAM is faster than in the CAMs in
all the tested cases.

7.5 Discussion
The experimental results can be explained as follows:

1. If the identifier of each node in the XML tree is a
string extension relative to its parent, that is, the
identifier for any node is a prefix of the identifiers
for each of its descendants, searching for the nearest
labeled descendants or ancestors involves string
comparison, which is time consuming. While in our
algorithm, with the 5-tuple nodeinfo, the determina-
tion of the descendant-ancestor relationship can be
done in constant time. This also explains why the
construction and the lookup of the CAM_N are
faster than those of the CAM_T.

2. The CAMs for different operations are combined
into one ICAM. Thus, even when the lookup
involves several operations, the nearest labeled
ancestor and descendant for the requested node
are located only once. While for CAM, this locating
process has to be executed multiple times. Hence,
ICAM has a better overall lookup performance
comparing to CAM.

8 CONCLUSION

In this paper, we study the problem of accessibility control
for XML data. We consider the approach of compressed

cam
cAMN X ]

average lookup time(ms)
o IS
(=)} o

=]
£y
T

I
¥

4 6 8 10 12 14
level of the requested node in the XML tree

2

Fig. 11. The average lookup time of the real data.



JIANG AND FU: INTEGRATION AND EFFICIENT LOOKUP OF COMPRESSED XML ACCESSIBILITY MAPS 15

accessibility maps (CAM) and propose an algorithm to
integrate the optimal compressed accessibility maps for
different operation types into an integrated compressed
map, ICAM, with a time complexity linear to the data size.
The result is a more compressed form of the accessibility
map, which also consolidates the information for each user
group. With the resulting ICAM, we propose an efficient
lookup method to determine the accessibility of a node. This
method can greatly improve the complexity of the lookup
time provided that the structure of the XML data is not
frequently updated. We also propose the possibility of
extending the ICAM to EICAM, further reducing the
lookup time complexity. The results of the experiments
verify the effectiveness of the integration method and the
lookup mechanism. From experiments, compared to the
method in [25], up to 60 percent of space can be saved by
the integration approach and our lookup algorithm can be
more than two times faster than that of [25].

One of the future works is to combine the accessibility
evaluation with the query evaluation to increase the overall
performance of the XML query processing.

ACKNOWLEDGMENTS

The authors thank Ting Yu for providing valuable
assistance in the experimental work and advice. The
authors thank the reviewers for very constructive sugges-
tions and helpful comments. Also they thank Zhixiang
Chen for a thorough review of the final draft. This research
is supported by the Hong Kong RGC Earmarked Grant
UGC REF.CUHK 4179/01E and Hong Kong ITF Grant REF.
ITS/069/03.

REFERENCES

[1] Document Object Model (DOM) Level 1 Specification, version 1.0,
W3C recommendation 1, http://www.w3.org/tr/rec-dom-level-
1, Oct. 1998.

[2] B. Kolman and R.C. Busby, Discrete Mathematical Structures for
Computer Science. Prentice-Hall Int’l Editions, second ed. 1987.

[3] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti, “Controlled
Access and Dissemination of XML Documents,” Proc. Second Int’l
Workshop Web Information and Data Management, Nov. 1999.

[4] E. Bertino and E. Ferrari, “Secure and Selective Dissemination of
XML Documents,” ACM Trans. Information and System Security,
vol. 5, no. 3, pp. 290-331, Aug. 2002.

[5S] E. Bertino, P. Samarati, and S. Jajodia, “An Extended Authoriza-
tion Model for Relational Databases,” IEEE Trans. Knowledge and
Data Eng., vol. 9, no. 1, pp. 85-101, Jan./Feb. 1997.

[6] P. Bird, “Implementing Low Level Access Control with DB2
UDB,” The IDUG Solutions ]., vol. 7, no. 3, 2000.

[7] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, “Securing XML Documents,” Proc. Int’l Conf. Extending
Database Technology, pp. 121-135, Mar. 2000.

[8] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, “A Fine-Grained Access Control System for XML
Documents,” ACM Trans. Information and System Security, vol. 5,
pp- 169-202, May 2002.

[9] A.L. Diaz and D. Lovell XML Generator, www.alphaworks.ibm.
com/tech/xmlgenerator/, Sept. 1999.

[10] R.Fagin, “On an Authorization Mechanism,” ACM Trans. Database
Systems, vol. 3, pp. 310-319, Sept. 1978.

[11] W.Fan, C. Chan, and M. Garofalakis, “Secure XML Querying with
Security Views,” Proc. ACM Int’l Conf. Management of Data, pp. 587-
598, 2004.

[12] I Fundulaki and M. Marx, “Specifying Access Control Policies for
XML Documents with XPath,” Proc. ACM Symp. Access Control
Models and Technologies, pp. 61-69, 2004.

[13] N. Gal-Oz, E. Gudes, and E.B. Fernandez, “A Model of Methods
Access Authorization in Object-Oriented Databases,” Proc. Very
Large Data Bases Conf., 1993.

[14] P. Griffiths and B. Wade, “An Authorization Mechanism for a
Relational Database System,” ACM Trans. Database Systems, vol. 1,
pp- 242-255, Sept. 1976.

[15] M. Kudo and S. Hada, “XML Document Security Based on
Provisional Authorization,” Proc. ACM Conf. Computer and Comm.
Security, pp. 87-96, Nov. 2000.

[16] Q. Li and B. Moon, “Indexing and Querying XML Data for
Regular Path Expressions.,” Proc. Very Large Data Bases Conf., 2001.

[17] M. Jiang and A. Fu, “Efficient Accessibility Lookup for XML,”
Proc. Int’l Conf. Databases and Applications (DBA2003), Feb. 2003.

[18] M. Jiang and A. Fu, “Integration and Efficient Lookup of
Compressed XML Accessibility Maps,” Technical Report CS-TR-
2005-1, Dept. Computer Science and Eng., Chinese Univ. of Hong
Kong, 2005.

[19] M. Murata, A. Tozawa, M. Kudo, and S. Hada, “XML Access
Control Using Static Analysis,” Proc. ACM Conf. Computer and
Comm. Security, pp. 73-84, 2003.

[20] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A Model of
Authorization for Next-Generation Database Systems,” ACM
Trans. Database Systems, vol. 16, pp. 88-131, Mar. 1991.

[21] F. Rabitti, D. Woelk, and W. Kim, “A Model of Authorization for
Object-Oriented and Semantic Databases,” Proc. Int’l Conf.
Extending Database Technology, Mar. 1988.

[22] D. Raphaely et al., “Establishing Security Policies,” Oracle8i
Application Developer’s Guide—Fundamentals Release 8.1.5,
chapter 12, Feb. 1999.

[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, second ed., 2002.

[24] M. Winslett, K. Smith, and X. Qian, “Formal Query Languages for
Secure Relational Databases,” ACM Trans. Database Systems,
vol. 19, pp. 626-662, Dec. 1994.

[25] T. Yu, D. Srivastava, L.V.S. Lakshmanan, and H.V. Jagadish,
“Compressed Accessibility Map: Efficient Access Control for
XML,” Proc. Very Large Data Bases Conf., pp. 478-489, 2002.

Mingfei Jiang received the BSc and MPhil
degrees in computer science from Southeast
University of China in 1999 and 2002, respec-
tively. She is now a PhD candidate in the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. Her
research interests include XML security, XML
index, and XML query.

Ada Wai-Chee Fu received the BSc degree in
computer science from the Chinese University of
Hong Kong in 1983, and both the MSc and PhD
degrees in computer science from Simon Fraser
University, Canada, in 1986 and 1990, respec-
tively. She worked at Bell Northern Research in
Ottawa, Canada, from 1989 to 1993 on a wide-
area distributed database project before joining
the Chinese University of Hong Kong in 1993.
Her research interests include issues in XML
data, time series databases, data mining, content-based retrieval in
multimedia databases, and parallel and distributed systems. She is a
member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



