
IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 1

Optimal Resource Placement in Structured
Peer-to-Peer Networks

Weixiong Rao,Lei Chen, Member, IEEE, Ada Wai-Chee Fu, Member, IEEE, and Guoren Wang

Abstract—Utilizing the skewed popularity distribution in P2P systems, common in Gnutella and KazaA like P2P applications, we
propose an optimal resource (replica or link) placement strategy, which can optimally tradeoff the performance gain and paid cost. The
proposed resource placement strategy, with better results than existing works, can be generally applied in randomized P2P systems
(Symphony) and deterministic P2P systems (e.g. Chord, Pastry, Tapestry, etc). We apply the proposed resource placement strategy
respectively to two novel applications: PCache (a P2P-based caching scheme) and PRing (a P2P ring structure). The simulation results
as well as a real deployment on Planetlab demonstrate the effectiveness of the proposed resource placement strategy in reducing the
average search cost of the whole system.

Index Terms—Peer-to-Peer (P2P) Network, Distributed Hash Table (DHT), Popularity, Placement, Cache, Topology

F

1 INTRODUCTION

A Peer-to-Peer (P2P) system is a promising new platform
that has the potential to support information exchange at

a very large scale. Existing P2P systems, such as Gnutella and
KazaA, also known as unstructured P2P, connect millions of
machines to provide large-scale file sharing services. Similarly,
structured P2P systems, such as Chord [28], Pastry [26],
Tapestry [32] and CAN [23], are used for file-sharing or other
large-scale applications. In these structured P2P systems, each
peer and its stored content are structurally organized using a
Distributed Hash Table (DHT).

For file-sharing, depending upon the contents of shared files,
some files are highly popular; while some are rarely accessed.
It means that data popularities, measured with respect to the
proportion of the submitted queries that can be satisfied by the
data contents [19], [9], [33], are typically skewed. In general,
the distributions of data popularity in file sharing and many
other applications are often non-uniform [19], [9], [33]. For
example, web requests on the Internet space are found to be
highly skewed with a Zipf-like distribution [6].

Most previous approaches consider the skewed popularity as
a challenge, since popular objects create excessive workloads
and result in the overloading problem. In this paper we
consider the skewed popularity as an opportunity and not just
a challenge: if we can make use of this popularity distribution,
there can be substantial reduction on the search cost for
popular contents, which may minimize the average search
cost of the entire dataset. Of course, in order to reduce the
average search cost, we have to make use of the available
resources. In different applications, resources to be placed in a
network can have various meanings. For example, in a content
distribution network (CDN), the resources refer to the replicas
of popular web objects; in unstructured P2P applications like
Gnutella, the pointers or links among peers can be considered
as resources; in World Wide Web (WWW), the hyper links
among web sites can be also treated as a kind of resources. In
this paper, we focus upon the center problem in structured P2P

networks: how to utilize the resources to reduce the search
cost which is measured by the average lookup hops? Here
the average lookup hops can be treated as the performance
requirement, termed as P; in order to achieve the target
performance P , resources, denoted by R, are consumed. R
can be replicas, or links, etc. A key problem related to the
resource placement strategy is where to place the resources R
in structured P2P. To answer the where problem, we propose
to place the resources R at the special acceleration nodes so
that the search can be accelerated by those acceleration nodes.

We apply such a placement strategy to PCache (A
Popularity-based Caching Approach in P2P) where replicas are
taken as the resources to accelerate the search for popular con-
tents. Then we propose solutions to the question of “how many
replicas are needed?” based on the following two optimization
criteria: (1) MAX PERF: given a constant number of replicas,
how to minimize the request lookup hops (i.e. maximize the
performance gain)? (2) MIN COST: given a targeted threshold
of the request lookup hops, how to minimize the amount of
replicas (i.e. minimize the paid cost)? In this paper, we give
closed-form solutions for both optimization criterion.

When the links among peers are treated as resources and
they are placed at acceleration nodes to accelerate the search
for popular objects, we can achieve similar performance as
PCache. Furthermore, when the total number of links in a
structured P2P network, as a constraint, is set to N log N ,
comparable with the number of total links in existing regular
ring structures (Chord [28] or Symphony [20]), our proposed
optimal ring structure, PRing, can achieve better results than
Chord or Symphony do.

To sum up, we make the following contributions in this
work:
• We propose a novel resource placement strategy for

improving the search efficiency. From experiments, our
strategy can achieve better results than current heuristic
approaches (e.g. CFS [10] and Pastry [27]) and an ap-
proximate approach (Beehive [21]);

• We provide closed-form solutions for the two problems

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 2

TABLE 1
Meanings of Main Symbols Used

Symbol Meaning
cx x-th object
ni i-th node
px popularity of object cx

lx number of replicas assigned for cx

N total number of nodes
L total number of links (alinks and llinks)
M total number of objects
R total number of replicas
H average number of hops to find all M objects
Hx average cost to search cx in number of hops
pi popularity of node ni

`i number of alinks assigned for ni

L total number of alinks
D total number of links (alinks and llinks)
H average number of hops to find all N nodes
Hi average number of hops to search node ni

k number of long links in Symphony
γ acceleration ratio

in PCache, MAX PERF and MIN COST, with similar
results in both randomized P2Ps and deterministic P2Ps;

• We propose a P2P structure, PRing, which can achieve
less average lookup hop number than Chord and Sym-
phony with the equal total number of links.

We remark three particularly interesting results as follows:
• Our replica placement strategy can be generally applied

to structured P2P networks including randomized P2P
networks (e.g. Symphony, etc.) and deterministic P2P
networks (e.g. Chord, Pastry, etc.);

• The optimal number of resources (replicas in PCache
and links in PRing) is found to be proportional to the
popularity. It is known that for unstructured P2Ps, the
random walk-based technique is optimized by the square-
root principle [8], [19], [33], [9]. However, here we
arrive at a different optimal function of the popularity
for structured P2P systems;

• Our analysis in structured P2P systems shows that the
average number of search hops in a structured P2P system
is related to the entropy of popularity. Intuitively this
makes sense since we have expected that our approach
can accelerate the search for popular nodes, then the skew
of the popularity distribution will play an important role
in the optimization of the search performance. Taking the
popularity as a probability function (of the query targets),
entropy is a sound measure of the skew of the distribution.

The rest of this paper is organized as follows: Section 2
explains the general resource placement strategy. Section 3 and
Section 4 respectively present PCache and PRing. Section 5
evaluates the proposed strategy and applications. In Section 6
we summarize the related work in this area. Finally, we
conclude in Section 7.

2 RESOURCE PLACEMENT STRATEGY

2.1 Structured Peer-to-Peer
Symphony: In Symphony [20], each node is assigned a
uniform real number id within [0,1) and manages the key
range corresponding to the segment on the unit ring as

defined by its own id and that of its immediate clockwise
predecessor. In each node there are two types of links: two
short links connected with its immediate neighbors (i.e. anti-
clockwise predecessor and clockwise successor), and k long
links constructed by a Harmonic distribution to connect remote
nodes, so that the probability that two nodes are connected by
the long link is inversely proportional to their distance on the
ring. To search a node with a particular key value y starting
from node ni, ni first checks whether the target value y is
inside its, local key range. If so, node ni is the target node;
otherwise, node ni selects a link, among all its long links,
whose other endpoint nt has the closest key range towards
the target value y; then the search request is forwarded to
node nt and node nt performs a similar operation to get to y.
Through this greedy algorithm, the target node will be found
if it exists; otherwise NULL will be returned. With k long
links constructed based on the Harmonic distribution in each
node, the average search cost in Symphony is O(1

k · log2 N).
Chord: Chord [28] assigns each node an m-bit identifier

using a hash function such as SHA-1. Node Identifiers are
ordered in an identifier circle modulo 2m. When each node
is only aware of its successor node on the circle, queries
for a given identifier can be passed around the circle via
these successor pointers until they first encounter a node that
succeeds the identifier; this is the node the query maps to.
A portion of the Chord protocol maintains these successor
pointers, thus ensuring that all lookups are resolved correctly.
However, this resolution scheme is inefficient: it may require
traversing all N nodes to find the appropriate mapping. To
accelerate this process, Chord maintains additional routing
information, i.e. m entries in the finger table. The ith entry
in the finger table at node n contains the identity of the first
node, s, that succeeds n by at least 2i−1 on the identifer circle:
i.e. s = successor(n + 2i−1), where 1 ≤ i ≤ m. With the
finger table, the number of nodes that must be contacted to
find a successor in N -node Chord network is O(log N).

2.2 Where to Place the Resources

With the introduction of Symphony and Chord in Section 2.1,
we may find that both the long link in Symphony and the
finger table in Chord are used to speed the lookup; otherwise
the lookup in Symphony or Chord will walk along the circle
node by node until the destination is found. Thus, without long
links or finger tables, the lookup complexity is O(N) where
N is the total number of nodes. Considering the short link
in Symphony and the connection between one node and its
successor in Chord that are used to construct the base overlay
structure, we intuitively call these links as the base overlay
link (in short, overlay link). Based on such overlay link, to
facilitate the introduction of the proposed resource placement
strategy, we first define the base overlay distance as follows:

Definition 1 (Base overlay distance) The base overlay dis-
tance from node ni to nj in a structured P2P, denoted as wij ,
is the number of hops from node ni to reach nj in the P2P
overlay network connected only by the base overlay link.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 3

Take Symphony in Figure 1 as an example, the base overlay
distance from ri to ni (in this figure, ri is the predecessor of
ni) is 1 hop, and the base overlay distance from nt0 to ni is 4
hops because there are 4 short links from nt0 to ni. Note that
if we consider the help of long links, the lookup from nt0 to
ni consumes only 2 hops: one hop from nt0 to ri, and another
hop from ri to ni. Similar situation holds for Chord.

1

1

1

1

1

1

1

1

1

Fig. 1. Placement Strategy in Symphony
To clearly understand the definition of overlay distance, we

first conduct an experiment as follows. Given a P2P network
Symphony (or Chord) with N nodes n1, ..., nN , we fix a node,
for example ni, as the destination node with 1 ≤ i ≤ N . By
the P2P lookup algorithm, which utilizes both long links (or
finger tables) and short links, for any 1 ≤ j ≤ N with j 6= i,
a search is initiated the source node nj to the destination ni.
The search may intermediately visit O(log N) nodes. For each
j ∈ [1, n] with j 6= i, we conduct total (N − 1) lookups and
record all intermediately visited nodes from nj to ni. Among
these intermediately visited nodes (except ni itself), we count
the visit frequency of each distinct intermediate node, denoted
as nt. This experiment illustrates a special scenario: the objects
stored in destination ni have the largest popularity px = 1.0
and objects stored in other nodes nj having popularity px =
0.0. Thus all searches target a destination ni with no search
towards other nodes nj .

We conduct the above experiment in Chord and Symphony,
respectively. Figure 2(a) plots the frequency to visit an inter-
mediate node nt with regards to the overlay distance from
nt to ni for N = 2000. Here, we sort the overlay distance
of x-axis by an ascending order and study the relationship
between the overlay distance and the visit frequency. As shown
in Figure 2(a), those nodes with smaller overlay distance have
higher visit frequencies. When considering the cumulative
visit frequency, we find for the top 10 (i.e. 0.5%) nodes
with the closet overlay distance to ni, the cumulative visit
frequency rate in Symphony and Chord is 11.49% and 16.71%,
respectively.

In Figure 2(a), among all intermediate nodes nt during the
search from nj to ni, a higher frequency of nt means nt,
having a smaller overlay distance to ni, is more possible to
intermediately intercept the lookup to ni. Thus, if we consider
placing resources R (like replicas or links) in the nt, then
with a high probability, nt can intermediately intercept the
searches before the search reaches the destination ni. Hence,
the resources in those intermediate nodes nt can help answer
the lookup towards ni. For example when resources R are

0 500 1000 1500 2000

0.00
0.02
0.04
0.06
0.08
0.10

 Chord

%
 o

f V
is

it
Fr

eq
ue

nc
y

Overlay DISTANCE

0.00
0.02
0.04
0.06
0.08
0.10

Symphony

0 500 1000 1500 2000

0.00

0.02

0.04

%
 o

f V
is

it
Fr

eq
ue

nc
y

overlay DISTANCE

0 500 1000 1500 2000

0.00

0.02

0.04 0 500 1000 1500 2000

0.00

0.02

0.04

Replicas = 100

Replicas = 50

Replicas = 10

(a) Before Replication (b) After Replication

Fig. 2. Resource Placement Strategy

replicas, the lookup for the object in ni can be directly
answered by the replicas placed in nt; and the search hop
numbers can be reduced as there is no need of continuing
the remaining search towards ni. When resources R are links
pointing from nt to the destination node ni, the search can
directly jump from nt to ni by only one hop, instead of
continuing the remaining routing process. Now we derive a
resource placement strategy as follows.

Definition 2 (Resource Placement Strategy) Given l resources
to be assigned to a node ni, the resources are placed at the
nodes with the l nearest overlay distances to ni. These nodes
are called the acceleration nodes of ni.

With the above strategy, the acceleration nodes can re-
duce the search hop numbers towards the destination node.
It makes sense because the routing in structured P2P is a
greedy algorithm, and when any routing method approaches
the destination, the distance to the destination is smaller. In this
situation, our acceleration nodes, just with smaller distances
before the destination, can intercept the routing towards the
destination. Taking the node ni of Figure 1 as an example, l
acceleration nodes are those nodes which continuously precede
ni along the ring. In details, the 1-st acceleration node of ni

is ri, i.e. the predecessor of ni; the 2-nd acceleration node of
ni is the predecessor of ri; ... the l-th acceleration node of ni

is the predecessor of the (l − 1)-th acceleration node of ni.
To show the effect of acceleration nodes, we repeat the

above experiment after the objects in ni are replicated to
the acceleration nodes of ni, with one replica to each of the
acceleration nodes. Figure 2(b) plots the experimental results
with Symphony as the underlying P2P network (due to the
similar results, we do not plot the results for Chord). Clearly,
the results show that the placed replicas can reduce the visit
frequency. When more replicas are placed, the distribution of
visit frequency becomes more even. In the case that 2000
replicas are used, all lookups towards ni will be answered
by the local replicas, without visiting any other peers, and the
distribution of visit frequency in Figure 2(b) becomes uniform.
By this experiment, we can find that acceleration nodes can
effectively intercept the lookups towards the destination ni,
and the replicas placed in acceleration nodes can directly
answer the lookups for the contents in ni, instead of continuing
the remaining lookups towards ni.

Besides the above empirical study, we will formally, in
Section 3, show how these replicas placed in acceleration

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 4

nodes can improve the search efficiency, and further extend the
placement strategy to a Popularity-based P2P Ring Structure
(PRing), which is given in Section 4.

3 PCACHE: POPULARITY BASED P2P WEB
CACHING

In this section we analyze PCache both in the randomized
structured P2P system (Section 3.2) and in the DHT-based de-
terminants structured P2P system (section 3.3), finally present
the PCache application architecture.

Though web caching has been extensively studied in the
literature, most works are related to the caching in a passive
manner, instead of a proactive manner. The key point for
the proactive caching in a P2P network is where and how
to proactively place the copies of web objects. When we
use replicas being resources R, we can apply the proposed
resource placement strategy in Section 2 to place the copies
of web objects in the acceleration nodes as the solution of the
where problem. Next based on the placement strategy, we pro-
pose the popularity-based optimal caching approach to tradeoff
the consumed resource R and the achieved performance P
measured by the average lookup hops.

3.1 Background of Web Caching

As an Internet application, web caching is widely used to
reduce the object request latency, to decrease the amount of
aggregate network traffic, and to balance the workload by
distributing the heavy workload of busy web servers. Given
a request from the web browser of a client side to the original
web server of the server side, web caching can be implemented
in various locations as follows: (i) in the local directory of
the client side; (ii) at the origin web server (for example, the
contents, or portions of contents, can be stored in a server-side
cache to reduce the server load); (iii) at the intermediate proxy
servers located between the client side and the original web
server, including client side proxy servers (the organization
proxy, and the forward proxy cache of client side ISP: Internet
Service Provider), and the server side proxy servers (reverse
proxy cache of server side ISP, and such a network is called
a CDN: content delivery network).

Web objects can be cached while passing to the client side
web browser from client side proxy servers (the organization
proxy, and the forward proxy cache of client side ISP), hence
there can be caching only for those objects which are already
requested. This kind of caching is typically called passive
caching at client side. On the other hand, proactively caching
means that the replicas of web objects are proactively cached
by the original web servers and the server side CDN to achieve
the goals of improved performance and balanced workload.
The proactively caching technique is widely utilized for the
object providers like Google or the third-party CDN provider
like Akamai. Though supporting load balancing and having
better performance (e.g. reduced request latency and decreased
bandwidth consumption), such caching involves high costs,
which include the expensive dedicate hardware devices (for
example high performance servers and network devices), the

operational or administrative cost and the associated network
bandwidth consumption.

P2P technology is an attractive technology to avoid the
expensive cost of the server side caching and CDN. By
connecting a large number of volunteered nodes with low costs
(for example desk top machines), P2P technology can be used
to construct a cooperative web caching system. Squirrel [16]
is an example of such a cooperative web caching system and
it shares the local contents to form an efficient and scalable
web caching. However, there is no consideration about the
popularity skewness of the contents in Squirrel. Consequently,
the overall workload of Squirrel is still unbalanced.

3.2 PCache in Symphony

As a proactive caching approach, PCache proactively repli-
cates the copies of web contents in order to reduce the
average lookup hops in P2P based Web Caching systems
(e.g. Squirrel [16]). On the other hand, the more copies of
web contents are replicated and fetched throughout the P2P
network, more cost including message volume and content
storage will be consumed. As a result, we use the copy number
of web contents to explicitly indicate the consumed cost.

By the proposed strategy in Section 2, PCache proactively
places the copies of popular contents in acceleration nodes:
when some popular content cx originally stored in the home
node ni, copies of cx are proactively replicated in the accel-
eration nodes of ni. Furthermore, PCache gives the solution
about how many copies of cx should be replicated in the
acceleration nodes of ni. When more replicas of cx are used,
more acceleration nodes of ni will be used to store replicas.
In order to optimally tradeoff the performance P and the
consumed resource R (i.e. replicas), we give an optimal
solution about how many replicas are created for cx based
on the popularity of cx, denoted as px. The following sections
show our optimal results in Symphony, Chord and other DHT
based structured P2P networks, respectively.

3.2.1 Acceleration Theorem

Now we formally analyze the effect of acceleration nodes
in Symphony. For a content cx with popularity px, we call
the node ni where cx is stored in P2P the home node of
cx. Suppose cx is assigned with lx replicas, we place lx
replicas in lx acceleration nodes, i.e. one replica of cx in each
acceleration node. The following theorem shows the benefit of
our placement strategy in Symphony by reducing the average
number of hops to lookup cx.

Theorem 1 Suppose Symphony assigns k long links at each
node and assigns lx replicas for object cx, then the average
number of hops to search object cx, Hx = O(log N/lx

k · log N),
if lx ≥ 1.

Proof: We adopt some similar arguments as in Sym-
phony [20] for our proof. Since each long link in Symphony
is constructed by the pdf 1

x ln N , then the probability for
any source node nj having a long link to cut the distance

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 5

i

i

i

j

i

t1

i

t2
t3 t0

Acceleration Nodes

i
j t1

t2
t3

t0

Acceleration Nodes

Fig. 3. Acceleration Nodes in (a) Symphony (b) Chord

z ∈ [1/N, 1) between nj and a destination node at least by
half, denoted as phalf , is given by

phalf =
∫ z

z/2

1
x ln N

dx =
1

log2 N

Note that phalf is independent of the value of z. If we treat
the event of halving the distance as a series of trials with
probability phalf , the expected number of trials before the
event successfully occurs is the expectation of a geometric
random variable: 1/phalf = log2 N , i.e. on average log2 N
long links are required to cut the distance by at least half.
Since each node in Symphony is assigned k long links, then
on average the search of O(log2 N

k) nodes, i.e. O(log2 N
k) hops,

are needed before the search from the source node ni with
distance z to the destination node arrives at any node with
distance at most z/2 to the destination node.

Now we consider the effect of acceleration nodes to the
average lookup hops. For simplicity, we transform Figure 1
to Figure 3(a), and assume that nj is the source node and ni

is the destination node. All of lx nodes between nt0 and ni,
except for ni itself, are the acceleration nodes of ni. Given
the unit circle of Symphony with N nodes, the distance from
nt0 to ni is wx = lx/N .

Given node nt1 with a (base overlay) distance to ni equal to
2wx, based on the definition of phalf , the probability for nt1

to have a long link pointing to one of lx acceleration nodes
of ni (i.e. the nodes from nt0 to ni) is phalf . Meanwhile, for
any node with a distance to nt0 smaller than wx, i.e. any node
located between nt1 and nt0, the probability for such a node
having a long link to any acceleration node of ni is bigger
than phalf . Thus, for a node between nt1 and nt0, the expected
number of long links used to reach one of acceleration nodes
of nj is at most 1

phalf
= log2 N , as the expected value of

a geometric random variable. Since each node is assigned k
long links, the average number of hops to one acceleration
node of ni, starting from any node between nt1 and nt0, is
at most O(log2 N

k). After the search reaches such acceleration
node, the replicas of cx in the acceleration node can directly
answer the search for cx, instead of continuing the remaining
search for cx in node ni. Thus, the average number of lookup
hops from one of the nodes between nt1 and nt0 is O(log2 N

k).
Similarly, for node nt2 with a distance 2wx to nt0, the

expected number of hops to reach some node between nt1 and
nt0 is O(log2 N

k). In the same way, with distance 4wx to nt0,

nt3 needs O(log2 N
k) hops to reach some node between nt2 and

nt0. As a result, from a starting node nj with any distance z to
nt0, a search needs O(log2 z/wx) iterations to half its current
distances until the search arrives at some node between nt1 and
nt0. For each iteration to cut the current distance by half, the
average number of hops is O(log2 N

k), then the whole search
require on average O(log2 z/wx · log2 N

k) hops. As described
before, for the remaining path from some node between nt1

and nt0 to the destination node ni, less than O(log2 N
k) hops

are required. Thus the average number of hops for nj to search
ni is O(log2 z/wi · log2 N

k), i.e. O(log N/li · log N
k). ¥

3.2.2 MAX PERF Performance Maximization

Based on the definition of popularity, object cx with popularity
px receives a fraction px of all searches. Supposing cx is
assigned with lx replicas, from Theorem 1, the average search
cost for cx, Hx, is O(log N/lx

k · log N). Given some popularity
distribution, a measure of the average search cost to a total of
M data objects, H , can be given by:

H =
M∑

x=1

(px ·Hx) =
M∑

x=1

[
px ·

(
log N/lx · log N

k

)]
(1)

In the optimization problem MAX PERF, given a constant
number of replicas, the average number of lookup hops can
be minimized in Symphony by the following theorem:

Theorem 2 Given
∑M

x=1 lx = L, H is minimized when ∀x,
lx = px · L.

Proof Sketch: This is an optimization problem to minimize the
value of H in Equation 1 subject to the constraint

∑M
x=1 lx =

L. We use the Lagrange multiplier method to solve for the
optimal value of lx in terms of px. First we find the Lagrange
multiplier λ that satisfies ∇H = λ ·∇f where f =

∑M
x=1 lx−

L = 0. First, treating px, log N and k as the constants,

∇H =
M∑

x=1

px · 1
ln k

· (− 1
lx

) · ûx (2)

where ûx is a unit vector. Next,

∇f =
M∑

x=1

λ · ûx (3)

Since ∇H = λ · ∇f , then

px · 1
ln k

· (− 1
lx

) = λ (4)

Solving for lx gives

lx = −px · 1
ln k

· 1
λ

(5)

Substituting the above equation into f =
∑M

x=1 lx −L = 0
gives

M∑
x=1

lx =
M∑

x=1

(−px · 1
ln k

· 1
λ

) = L (6)

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 6

since
∑M

x=1 px = 1, we have

M∑
x=1

(−px · 1
ln k

· 1
λ

) = (− 1
ln k

· 1
λ

) = L (7)

− 1
λ

=
L
1

ln k

(8)

By substituting the above equation back to Equation 5, we
arrive at Theorem 2. ¥

Note the proportional result of Theorem 2 is different from
the square root result in [9]. With Theorem 2, given totally L
replicas, for some object cx with popularity px, we can assign
it with lx = dpx · Le replicas to minimize the average search
cost H . For a large value of L and px, the result of px ·L could
be even larger than the maximum valid value of lx, (N − 1).
Thus for px · L > (N − 1), we only assign (N − 1) replicas
for cx and allocate the remaining replicas to the other objects
for further acceleration. When we substitute lx = px · L into
Equation 1, we get:

H =
log N

k
·
(

log N −
M∑

x=1

px log px − log L

)
(9)

Interestingly, we notice that the term −∑M
x=1 px log px in

Equations 9 is in fact the entropy of the popularities px.
This makes sense since we have expected that the skew of
the popularity distribution will play an important role in the
optimization of the system settings, and taking the popularity
as a probability function (of the query targets) entropy is a
sound measure of the skew of the distribution. In conclusion,
we can state that the average search cost H depends upon the
values of L, N and the entropy of px.

3.2.3 MIN COST for Replicas Minimization

In contrast to the problem of MAX PERF, the optimization
problem of MIN COST is to minimize the total number of
replicas, L, to achieve the target constant τ for the average
search cost H . We derive the following theorem to solve the
optimization problem of MIN COST:

Theorem 3 Given H = τ , L =
∑M

x=1 lx is minimized if ∀x
lx = px log N

k ·kα, where α = (log N−τk/ log N−log log N+
log k − Epx) and Epx =

∑M
x=1 (px · logk px) is the entropy

of px.

Proof: Similar to the proof of Theorem 2 by using Lagrange
multiplier method. ¥

The benefit of our optimal solution for MIN COST is that
the value of τ can be a constant independent upon the node
count N . Thus the optimal allocation of lx for data object
cx in Theorem 3 can achieve O(1) number of lookup hops.
As Theorem 2, Theorem 3 also gives rise to the proportional
principle where lx ∝ px, and the entropy term of px appears
as well. Thus, the proportional principle and the relationship
to the entropy of px are related to the optimal solutions to
both MAX PERF and MIN COST in Symphony.

3.3 PCache in DHT based Structured P2Ps

In this section we extend the placement strategy to DHT
based structured P2P. Chord is chosen as the example of DHT
based structured P2P due to: (1) similar ring structures and
prefix based routing as in Symphony; (2) other prefix-based
DHTs like Pastry, Tapestry and Kademlia can be generalized
to a ring-like structure by ordering the NodeID per node.
Therefore, our placement strategy can be similarly applied in
these prefix routing DHTs.

3.3.1 Acceleration Theorem in Chord
Similar to Theorem 1 in Section 3.2.1, we have the following
theorem for Chord:

Theorem 4 Suppose Chord assigns a finger table with size
of log2 N at each node and assigns lx acceleration nodes for
object cx with ni as the home node, for 1 ≤ i ≤ N , then the
average hops to search object cx, Hx = O(log2 N − log2 lx),
if lx ≥ 1.

Proof: Based on Chord’s finger table allocation principle,
let the i-th node in Chord be the node with a node ID i, the
k-th item in the finger table points to the successor node of ID
(i + 2k−1) where 1 ≤ k ≤ log2 N . As shown in Figure 3(b),
by the lookup algorithm provided by Chord, the search from
source nj with distance z to destination ni takes at most log2 z
hops. Thus, along the routing path from nj to ni, there are at
most (log2 z−1) intermediate nodes denoted as ntx where 1 ≤
x ≤ (log2 z− 1). During each hop from an intermediate node
ntx to a next intermediate node ntx+1, the distance between
ntx and ntx+1 is 2x. Since in Chord at most log2 z hops are
consumed from nj to ni, then sum of the distance for each
hop between two continuous intermediate nodes is no less than
the distance between nj and ni, i.e.

∑log2 z−2
x=1 2x ≥ z.

Suppose lx acceleration nodes are assigned for object cx in
home node ni. These acceleration nodes precede ni with the
nearest overlay distances (see Definition 1) , then these lx ac-
celeration nodes will cover at least 0.5∗ log2 lx hops along the
routing path from nj towards ni because lx ≥

∑0.5∗log2 lx
u=1 2u.

Then, with lx acceleration nodes assigned to ni, the number of
hops from nj to ni will be reduced by at least 0.5∗log2 lx, and
the number of hops from nj to ni is (log2 N − 0.5 ∗ log2 lx).
Consequently, for any source nj , the number of hops from nj

to ni is O(log N − log lx). ¥

3.3.2 MAX PERF in Chord
The proportional principle based popularity px in Theorem 2
can be similarly derived for Chord. We need only substitute the
results of Hi in Theorem 4 into Equation 1 in Section 3.2.2,
which gives:

H =
M∑

x=1

(px ·Hx) =
M∑

x=1

px · (log N − log lx) (10)

For the optimal performance problem MAX PERF, we have
the following result:

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 7

Theorem 5 Given
∑M

x=1 lx = L, H is minimized when
∀x lx = px · L
Proof: Similar to the proving of Theorem 2 in Section 3.2.2.
¥

Here for Chord we also achieve the popularity based propor-
tional principle as Symphony. Again we substitute lx = px ·L
into Equation 10 and get:

H = log N − log L−
M∑

x=0

(px · log px) (11)

In Equation 11, we find −∑M
x=0 (px · log px), i.e. the

entropy of px, again appears in the average lookup hops
in Chord. It can be explained with the similar reasons as
Symphony. In particular, Equation 9 for Symphony when
k = log N will be consistent with Equation 11 for Chord.

3.3.3 MIN COST in Chord
For the optimization problem MIN COST, we get the follow-
ing result:

Theorem 6 Given H = τ , L =
∑C

x=1 lx is minimized when
lx = px · k(log N−τ−Epx), where Epx =

∑C
x=1 (px · logk px)

is the entropy of px.

Proof: Similar to the proof of Theorem 3 in Section 3.2.3.¥

3.4 PCache System Architecture
3.4.1 Overview
The target environment of PCache is a large scale distributed
system with a large number of peer nodes. Such environment
could be corporate networks or Internet service providers with
well-managed and dedicated machines. In each node, PCache
runs as a daemon program. There are three components in
PCache: proactive cache proxy, local cache store, and the
underlying P2P operation unit (see Figure 4). The web browser
in each node is configured to use the proactive cache proxy to
access the web objects. The proactive cache proxy is respon-
sible for: (i) intercepting http requests from web browsers;
(ii) caching requested web objects; (iii) optimally replicating
popular web objects based on the replica placement strategy;
and (iv) maintaining the consistency of cached Web objects.
The cache store, used to locally store the cached web objects,
is limited to a fixed storage size, and the Least Recent Used
(LRU) algorithm is used to replace Web objects. Finally, the
P2P operation unit provides the get/put API by which web
objects are retrieved/stored from/to the home node of the web
object. Note that web objects are typically of a reasonable size.

When a client node submits a http request, the client node
itself, intermediate nodes, and the home node of the http URL
can cooperatively serve the http request when the local cache
stores of these nodes contain the replicas of the requested web
object. If no replica of such requested object is found, PCache
redirects the request to the original web server. As a result,
PCache utilizes the underlying P2P overlay to cooperatively
serve the http request by replicas of web contents. The key

Fig. 4. PCache Architecture

point of PCache is to proactively replicate the web contents
based on the optimal principle derived in previous sections.
Therefore, PCache can optimally tradeoff the paid cost (i.e.
the number of replicas) and the performance gain (i.e. average
search hop number).

Through Figure 4, we illustrate the use of PCache as
follows.
• The client user sends the http request by submitting a

URL via the web browser to access the web object (a.1
in Figure 4). After intercepting the http request from the
web browser, the proactive cache proxy checks the local
cache store to determine whether a replica belonging to
such a URL is available (a.2 in Figure 4).

• If there is a replica in the local cache store, such replica
is directly returned to the client (a.3 and a.4 in Figure 4);

• Otherwise, if no replica of the requested object exists ,
the proactive cache proxy redirects (b.1 in Figure 4) the
http request to the P2P operation unit to lookup the home
node (i.e. peer 3 in Figure 4) with a node ID closest to
the hash ID of the URL. The http request is greedily
forwarded towards peer 3. During the forwarding, if
the local cache store of an intermediated node peer 2
contains a replica of the requested object (b.2 in Figure 4),
then the replica is returned to the requester (b.3 in
Figure 4);

• When all intermediate nodes towards the home node
peer 3 do not contain the replica of such requested ob-
ject, the request finally reaches peer 3 (c.1 in Figure 4).
Then PCache will check whether a replica in peer 3 is
available, and if so, the replica is directly returned to
the requester (c.2 in Figure 4); otherwise, the request
will visit the original web server (d.1 in Figure 4) and
fetch the requested object to the home node peer 3 (d.2
in Figure 4), then the home node responds the original
requester peer 1.

• The home node peer 3 probatively replicates the object
cx to an acceleration node peer 2 (d.3 in Figure 4).

3.4.2 Load Balancing
Though the skewed popularity can bring the benefit of reduc-
ing the average search cost, it creates the unbalanced workload.
In particular, the home nodes for the most popular web objects
will serve more the most requests. However, when the replicas
of popular web objects are placed in acceleration nodes, the
requests for popular web objects are cooperatively served by

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 8

the replicas in acceleration nodes. As a result, the workload
of these home nodes for popular web objects are reduced. As
shown in Figure 2(b), the replicas in acceleration nodes can
efficiently intercept the requests towards the home node of
the most popular web objects, and the workload of the home
node is shared by acceleration nodes. In addition, we conduct
the experiment in Section 4 to study the load balancing in the
general case, instead of the special case of Figure 2(b) where a
single home node has the highest popularity. The experimental
result in Section 4 shows that the replicas in acceleration nodes
can help achieve the balanced workload throughout the whole
P2P network.

3.4.3 Popularity Estimation
We may periodically approximate the value of content pop-
ularity px and the popularity distribution. First each peer
periodically measures the number of lookups received for
each local content. If, the content is the raw object instead
of replicated copy, the count number of received lookups can
directly indicate the popularity of such content; otherwise, the
lookups for some content cx with lx replicas may be answered
by one of lx replicas distributed in lx acceleration nodes.
The query count of cx can be computed by aggregating the
queries answered by all of these lx replicas. We may use the
aggregation protocol in [31] to estimate the total number of
queries. For each node, the number of received queries can be
measured by counting at a regular interval.

Since the popularity distribution is formed with a relatively
long period, we can setup the long interval to collect the
query count in order to reduce the message volume caused
by popularity estimation. When copies of cx are progressively
replicated in lx acceleration nodes, the query count of all lx
replicas can be aggregated and the final query count will be
computed in home node of cx. However, a sudden burst of
queries can rapidly change the rate, hence we measure the
query arrival time to respond to the change in query rate.
Then, the popularity px can be estimated by the query rate
against the total query rate. After that, the home node of cx

will assign more replicas of cx to relax the workload of a
sudden burst.

3.4.4 Consistency Maintenance
A common concern in maintaining object copies at multiple
acceleration nodes is the issue of content consistency. When a
web object expires, its home node is responsible for fetching a
new copy from the origin web server. Then this fresh copy is
propagated proactively to all acceleration nodes. To resolve the
content conflict, an extra field, i.e. the object version, can be
attached to a web object. When the web object is refreshed,
its home node increases the object version. An acceleration
node always refreshes the web object by the received copy
with a larger version. The object version is helpful for the
acceleration node that may miss a fresh object to restore itself
to a consistent state.

Though PCache mainly focuses on the optimization problem
between the average lookup hop number and the replica
number, Web objects are different in data size and update
rates [12]. That could affect the optimal replica number lx

if the communication cost of updating replicas is considered.
An approximation is to use a factor by the ratio between the
communication cost of updating a web object against the the
average communication cost. We need to measure the data size
and update rate of each web object. Then the multiplication of
the data size and update rate is treated as the communication
cost of updating a web object, denoted as Cx. Based on the
optimal replica number for such web object, lx (e.g. derived
in Theorem 2), we can approximately tune the replica number
as lx · Cx

C , where C is the average communication cost. Based
on such idea, we could extend PCache to other situations. For
example if the real storage is considered, we can find a similar
storage factor and tune the replica number, correspondingly.

4 PRING: A POPULARITY BASED P2P RING
STRUCTURE
In this section we consider the links to connect the peers in
a P2P network as the resource R. Following the resource
placement strategy in Section 2, for a given node ni, we
assign extra links to connect ni’s acceleration nodes and ni.
For each acceleration node, the extra link, called acceleration
link (alink), as shown in Figure 5, is constructed to point to ni.
When a search for some object in ni arrives at one acceleration
node of ni, the search can directly jump to ni by the alink.
Compared with PCache where the request for popular objects
is directly answered by the replicas, the search for popular
node ni in PRing only requires one more hop via alink.

wx

i

4wx

j

wx

t1

2wx

z

t2t3 t0

Acceleration

 Nodes

Acceleration

 Links

Fig. 5. Acceleration Links in Symphony

In PRing, we choose Symphony [20] as the base P2P
structure due to the unique property of Symphony that the
number of long links in each node can be flexibly configured.
In Symphony, the number of long links, k, is the same for
all nodes, and if it is set as k = O(1) then the average
search cost is O(1

k · log2 N). With this kind of flexility, we
can adaptively set the varied number of long links in order to
optimally achieve the best performance P .

In PRing there are three kinds of links: alinks for accel-
eration purpose, original short links and long link (llink) in
Symphony. Since short link is always used to construct the
base ring structure by connecting two immediate neighbors,
we can treat the number of short links assigned to each node
fixed. For a given number of all links (llinks and alinks), we
focus on how many fraction of all links are assigned for alinks
and the remaining for llinks.

In PRing, for a given node ni, we aggregate the object
popularities px of all objects cx stored in ni as the node
popularity of ni, denoted by pi. Following similar proofs
for the properties in PCache, we can derive the following
corollaries, respectively related to Theorem 1, Theorem 2 and
Theorem 3:

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 9

Corollary 1 The average search cost to node ni in PRing is
Hi = O(log N/`i

k · log N) where `i is the number of alinks
assigned for node ni.

Let N be the number of nodes in PRing, and H =∑M
i=1 (pi ·Hi).

Corollary 2 If there are in total L alinks in PRing, H is
minimized when ∀i `i = pi · L.

Corollary 3 If H = τ , then the total number of alinks is mini-
mized when `i = pi log N

k ·kα, where α = (log N−τk/ log N−
log log N + log k−Epi

) and Epi
=

∑N
i=1 (pi · logk pi) is the

entropy of pi.

The above corollaries for PRing are similar to the theorems
for PCache. Nevertheless, we are interested in how the per-
formance of PRing, by the average search cost H, compares
with existing P2P structures like Symphony itself and Chord,
particularly when the total number of links (including alinks
and llinks) in PRing are equal to the total number of regular
long links in Symphony, and that of finger table size in Chord.

Based on such problem, we apply the result of corollary 2
to further improve the average search cost H for PRing.
Until now, for node ni in PRing with total L number of
alinks, we optimally assign pi · L number of alinks to ni

based on its popularity pi. Actually such assignment scheme
does not globally consider the assignment between llinks and
alinks. When Symphony is used as the underlying P2P overlay
network in PRing, each node is regularly assigned with k
llinks. With consideration of the number of alinks and llinks,
there are total D = (k ·N + L) links. On the constraint of a
constant value of D, we focus on how many links are assigned
as llinks and how many are as alinks. Here we define the term
acceleration ratio γ as following:

Definition 3 The acceleration ratio, denoted by γ, is defined
as the fraction of the number of alinks among all available
links, i.e. γ = L

D .

Then with the definition of acceleration ratio γ and the
constant number of all links, we get k = (1 − γ)D/N and
L = γ · D, which can be substituted to Equation 9:

H =
N log N

D(1− γ)
·
[
log N −

N∑

i=0

pi log pi − log(γD)

]
(12)

Theorem 7 To minimize H in Equation 12, given the value
of D, the total number of links including llinks and alinks, the
acceleration ratio γ where 0 < γ < 1 satisfies:

log (γD) +
1− γ

γ
= log N −

N∑

i=1

pi log pi (13)

Proof: When the probability distribution of pi and the values
of D and N are given, the value of H in Equation 12 is
dependent upon a single variance γ. To minimize H, we can
solve the equation H′ = 0, where H′ is the derivative of H,
and then give equation 13. ¥

The value of γ in Theorem 7 is within (0.0, 1.0). Let us
consider the extreme cases when γ = 0.0 or 1.0. If all D links
are assigned as N · k llinks, i.e. γ = 0.0, Equation 12 then
becomes H = N log2 N

D . Note that when γ = 0.0, there is no
llink, and we have the original Symphony structure. If γ = 1.0,
then all D links are allocated for alinks with L = D, the
average search cost H is O(N), which is quite unacceptable.

As a special case that D = N · log N which is comparable
to existing DHT systems like Chord, then Equation 13 and
Equation 12 become

log γ +
1
γ

= 1− log (log N)−
N∑

i=1

pi log pi (14)

H =
−∑N

i=1 pi log pi − log γ − log (log N)
(1− γ)

(15)

In the experiments we shall show that the optimal value of
γ can give better performance results than other values of γ,
including 0.0 and 1.0.

Discussion: It is well-known that the topologies of Internet,
WWW, social networks, and cells are the so-called scale-
free networks. Such networks display an unexpected degree
of robustness, the ability of their nodes to communicate being
unaffected even by unrealistically high failure rates. However,
error tolerance comes at a price that these networks are
vulnerable to attacks by the selection and removal of a few
nodes playing a vital role in maintaining the network’s con-
nectivity [25]. Different from these scale-free networks with
power-law organizational structures, our proposed topology
PRing avoids such extremely skewed distribution of links
by considering the optimal tradeoff between the number of
llinks and alinks in Theorem 7. From both numeric results
and simulation results, we can find that for the commonly
appearing Zipf parameter α ≈ 1.15, only a small fraction
(i.e. the acceleration ratio γ = 0.1562 when α = 1.15 and
N=8192) of all links are assigned as alinks, and the majority
of links are still regular llinks. Furthermore, the larger value
of N results in the smaller value of the acceleration ratio
γ. Consequently, the purpose of PRing is to (i) accelerate
the search for popular nodes thus minimizing the overall
average lookup hops; (ii) avoid the extremely skewed linkage
distribution towards a few popular nodes by setting up an
optimal value of γ to tradeoff the link assignment between
alinks and llinks.

With a skewed popularity pi, nevertheless, PRing means the
irregular topology where popular nodes have more alinks than
unpopular nodes do. Though with such un-regular topology,
our experimental results show that the average search cost H
in PRing is less than Chord and Symphony with the equal
number of links N · log N . However, due to the skewed pop-
ularity, PRing will produce an un-balanced workload to serve
incoming requests. To overcome the unbalanced workload, as
one of available solutions, we can apply PCache to enhance
the maintenance of PRing. As a result, the workloads caused
by popular objects can be cooperatively served by the replicas
in acceleration nodes, that has already been given by PCache;
meanwhile, the popularity distribution becomes less skewed

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 10

and PRing maintains the more balanced topology.
In addition, when considering the capacity heterogeneity, we

can follow the technique in [14] to setup virtual nodes in a
powerful physical machine. After such technique is adopted,
an interesting situation is that the virtual nodes inside one
machine could be simultaneously used as the acceleration
nodes of a home node. In this situation, the physical machine
maintains only one copy of the web object in the home node,
instead of multiple copies with one copy for each of virtual
node. Clearly, it can help reduce the maintenance cost to store
the content copies and to check the content consistency.

Finally, considering the practical operation, each node can
manage the construction and maintenance of alinks and llinks
with differentiate protocols. First, to construct the alinks and
llinks, based on the operational policy, each node sets the
minimal number of llinks (e.g. at least one llinks) and the
maximal number of alinks (e.g. no more than its capacity). In
this way, the overall assignment of alinks and llinks can be
practically manageable. Secondly, for the maintenance side,
the llinks are kept as constant connections with a higher
Qualify of Service (QoS) than the alinks. This makes sense
since llinks always can guarantee the O(log N) number of
routing hops.

5 EVALUATION

In this section we evaluate the performance of PCache and
PRing. The evaluation is for four purposes:
• The comparison of PCache with three related approaches

(CFS [10], PAST [27] and Beehive [21]) respectively
on three P2P networks (Symphony, Chord and Pastry).
All comparisons are based on two publicly available web
trace files;

• The deployment of PCache in the real emulation platform
PlanetLab;

• The numeric results of PRing by MatLab to study the
optimality of PRing under various configuration parame-
ters;

• The simulation results PRing with the comparison of
two related ring structures (Symphony and Chord) with
various P2P topologies;

5.1 Traces
Table 2 lists the Web traces we have used for the performance
evaluation.
• NLANR traces: NLANR (National Lab of Applied Net-

work Research) provides sanitized cache access logs in the
public domain [1]. We have used 2 days’ traces of Jan 9,
2007 and Jan 10, 2007 from the “bo”, “pa”, “sd” and “uc”
proxies.
• BU traces: Boston University collected traces from a

similar computing facility and user population in 1995 and
1998, which can be found in [2]. We have selected the
contents in subdirectory condensed/272 of BU-www-client-
traces.tar.gz
To clearly show the popularity distribution, we respectively

plot the count of requests per URL ordered by the ranking

TABLE 2
Statistics about the traces

Traces NLANR BU
Time Jan 9-10, 2007 Nov 1,1994 -

Jan 17, 1995
Requests 189034 107578
Contents 117765 16939
Total (GB) 2.66406 0.55371

Infinite Cache (GB) 2.0332 0.3945
Avg Requests per Content 1.60518 6.3500973
Max Requests per Content 1696 3328
Min Requests per Content 1 1
Avg content popularity (%) .000849149 0.005902784
Max content popularity (%) 0.8971931 3.093569317
Min content popularity (%) 0.000529005 0.000929558

Hit ratio (%) 37.8239 72.5603748

of popularities of NLANR trace and BU trace in Figure 6.
The ranking sequence in the x-axis of Figure 6 is ordered in a
descending manner. For the points with a zero hit, we add the
original requests by 1 so that the points with zero value can be
shown on the y-axis with log-scale. From this figure, we can
find that the requests count basically follows the well-known
Zipf like distribution. Furthermore, based on the definition of
entropy −∑M

x=1 (px · logk px), for k = 7.6, we compute the
entropy as 6.2579 and 2.7637, respectively for NLANR trace
file and BU trace file. Since the entropy is used to measure the
randomness of the popularity distribution, we can find that the
popularity distribution of BU trace file is more skewed than
that of NLANR trace file.

100 101 102 103 104 105 106

100

101

102

103

104

NLANR Trace File

R
eq

ue
t N

um
be

r P
er

 U
R

L
(lo

g)

Ranking of Popularity (log)
100 101 102 103 104 105

100

101

102

103

104

R
eq

ue
t N

um
be

r P
er

 U
R

L
(lo

g)

Ranking of Popularity (log)

BU Trace File

(a) NLANR trace (b) BU trace

Fig. 6. Requests of URLs

5.2 Evaluation Approaches
During the evaluation, we mainly use three kinds of evaluation
approaches: an event driven simulator, the deployment in
PlanetLab, and the numeric result computed by Matlab. The
metric used in the simulation and numeric result is the average
hop number H . In the PlanetLab deployment, the evaluation
metrics include the average hit rate and external bandwidth.

During the simulation, we use an event driven simulator to
respectively simulate Chord protocol. Based on the simulator,
we revise it to produce the Symphony protocol by connecting
peers based on the Harmonic distribution, instead of the
deterministic scheme in Chord. For Pastry implementation,
we chose the open source code FreePastry1. In all implemen-
tations, the web object is stored and retrieved in the home
node of its URL. Furthermore, the web objects are proactively
replicated to the acceleration nodes (peers) based on PCache’s
optimal solutions for MAX PERF and MIN COST.

1. FreePastry:http://www.freepastry.org

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 11

TABLE 3
Solving MAX PERF Problem with N = 4000 to Evaluate the Achieved Average Lookup Hops H .

Replicas(× 1000) NLANR Trace BU Trace
PAST CFS Beehive Our work PAST CFS Beehive Our work

Chord
0 7.97255 7.97255 7.97255 7.97255 7.97255 7.97255
40 7.61557 7.29463 7.05315 6.9135 6.013 5.35135
80 7.39019 7.02557 6.61353 6.0389 5.2158 4.0135
160 6.82265 6.3123 6.0135 5.1931 4.1131 2.8131
400 5.66699 5.23435 4.63136 3.3151 2.351 1.8953

Symphony
0 8.13513 8.13513 8.13513 8.13513 8.13513 8.13513
40 7.81557 7.41463 7.29123 7.351 6.51535 5.58135
80 7.59019 7.12557 6.93521 6.3389 5.5909 4.0135
160 6.9565 6.6133 6.31618 5.4133 4.2513 2.8131
400 6.13567 5.5135 5.2353 3.19315 2.3835 2.09

Pastry
0 4.798 4.798 4.798 4.798 4.798 4.798 4.798 4.798
40 4.51557 4.29463 4.20391 3.63391 4.25135 4.113 4.05315 3.2135
80 4.29019 4.02557 4.05315 3.04315 3.91353 3.7135 3.6158 2.7389
160 3.82265 3.7123 3.66353 2.61353 3.0135 3.5131 3.1931 2.4131
400 3.46699 3.23435 3.11136 2.01136 2.03136 2.39 2.151 1.851

For the realistic deployment in Planetlab environment, we
chose FreePastry as the example of P2P network and adopt the
optimal solution of MAX PERF to evaluate the performance
of PCache. The reasons that we chose FreePastry as the
example of P2P network are given as follows: (1) up to
date, FreePastry is the most widely used and powerful open
source implementation of DHT; (2) Pastry shares the similar
ring structure as Symphony and Chord [7]; (3) though we
only conduct the deployment of FreePastry-based PCache over
PlanetLab, we believe the similar results will be achieved for
the deployment of Chord or Symphony-based PCache over
PlanetLab.

We deploy FreePastry based PCache implementation on a
set of around 90 Planet-Lab nodes. In each PlanetLab node we
start up 10 FreePastry instances (i.e. one port for each instance
in the same physical machine) to standard for total around
900 peers, and measure their performance with respect to the
three metrics including average lookup hops H , average hit
rate and external bandwidth. For this experiment, we use the
NLANR web trace of Section 5.1 with total 189034 replicas
as the resource to improve the lookup performance. During
the first hour during the experiment, all distinct URLs in
the Web trace are published to simulate the web contents
stored in the home nodes. After that, with consideration of
the limited bandwidth of PlanetLab nodes, 10 special nodes
are specially used to randomly chose 900 records from the
trace file every one minute (i.e. 90 records per node), and
then send the chosen records to 900 peers. After receiving the
records, each peer simulates the search by finding the home
node for the URL appearing in each received record. Since
the records in the trace themselves are skewed distributed,
such searching can be used to simulate the search with skewed
popularity, following the original distribution in the web trace
file. The whole experiment lasts for the total 14 days, and
we collect the statistics every day, and every 30 minutes the
content popularity px is estimated.

5.3 Comparison of Placement Strategy

To compare the resource placement strategies, we use replica
as the resource to solve MAX PERF and MIN COST opti-
mization problems. All experimental results in this section are
based on the event driven simulation.

Solving MAX PERF problem: We compare our placement
strategies in Section 2 with other strategies: PAST strat-
egy, CFS strategy, and Beehive strategy respectively with
Symphony, Chord and Pastry as the underlying P2P over-
lay network platforms. Following the strategy described in
[27], PAST strategy replicates the copies of web contents
in randomly chosen nodes; CFS [10] which is a cooperative
file system based on Chord [28], and we place replicas
along the lookup path towards the destination. Since Beehive
strategy [21] only provides the approximate solution for Zipf
popularity distribution in Pastry, we apply Beehive strategy
only in Pastry. Also for a fairness comparison, the replica
number for each strategy is also based on the popularity-based
proportional assignment, as we achieved in Section 3.

Table 3 illustrates the placement strategy comparisons for
solving the MAX PERF optimization problem in three P2P
networks with two trace files: given a number as the total
number of replicas, each item in Table 3 shows the average
lookup hops. Based on these results, we can find:

• PCache can achieve the best average lookup hops H
in three P2P networks. This is because: (a) PCache by
placing the replicas along the acceleration nodes can
intercept the lookups towards the destination nodes with
a high probability, as shown in Figure 2. Thus it can
thus reduce the average lookup number H; for CFS or
random strategy, the heuristic replica placement is useful
to some partial nodes. For example in Figure 1, for
CFS strategy, though replicas placed in node ri, nt0,
nt2 and nj can benefit the search to ni, the search
from other nodes (except ri, nt0, nt2 or nj) can not
benefit from such placement; (b) our work, with the
proportional replication, can be generally applied in both
randomized P2P networks (Symphony) and deterministic

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 12

TABLE 4
Solving MIN COST Problem with N = 4000 to Find the Consumed Replicas (× 1000)

Avg Lookup Hops H NLANR Trace BU Trace
PAST CFS Beehive Our work PAST CFS Beehive Our work

Chord
2 670 510 387
3 450 331.3 140
4 281 201 80
5 870 613.05 400 190 90 48.13
6 300 350 223 80 40 20.01
7 100 84 80 52.6 18.2 10.001
8 19.153 16.2 11.2 2.81 1.353 1.050

Symphony
2 960 660 423
3 591 482.3 251.8
4 431 339.1 180
5 1013 871.2 533.4 359.6 190.4 93.13
6 522 423 283 180 86 20.01
7 280 229 130 66.3 43.2 16.3
8 37.153 26.2 15.2 10.81 5.353 1.050

Pastry
1 429 350 199 113
2 631.5 484.5 401.3 330.7 214 259 130 92
3 390 281 120.6 90.1 73.6 68.1 53.3 23.1

P2Ps (DHT); (3) our work is better than the approximate
solution Beehive [21].

• With the equal total number of replicas L, the value of
H of BU is less than that of NLANR trace. It can be
clearly explained by the value of popularity entropies,
i.e. −∑M

x=1 px log px, of BU trace smaller than that of
NLANR trace. Intuitively, for BU trace with a skew
popularity distribution, some given number of replicas
can improve the majority of all searches, which are
targeted to a few number of highly popular objects; for
NLANR trace with a less skewed popularity distribution,
the equal number of replicas only improve minor searches
which are targeted to much more objects.

Solving MIN COST problem: Table 4 illustrates the required
number of replicas L with the goal to satisfy the target lookup
hops τ for solving MIN COST problem. Naturally, to satisfy
a smaller τ , more copies will be consumed. From Table 4,
to achieve the same target number of hops τ , our strategy
PCache consumes the fewest number of replicas L for both
NLANR trace and BU trace. Furthermore, to achieve the
reduction of 1 hop from τ = 8 to τ = 7, for PCache in
Symphony with NLANR trace, about 1.2× 104 more replicas
are required; while to achieve the same reduction of 1 hop
from τ = 6 to τ = 5, about 7 × 106 more replicas are
required. It means that the same reduction of the average
lookup hops consumes nearly 700 times of replicas. Also due
to the different entropy values for BU trace and NLANR trace,
more replicas are consumed for NLANR trace than BU trace.
These experimental results provide a guidelines for a system
designer about the tradeoff between the gained performance
and the paid cost.

5.4 Evaluation of PCache in PlanetLab

Figure 7(a) shows the average lookup hops. In this figure the
statistical value of the average lookup hops gradually becomes
stable equal to 3.08 after 6 days, because it is enough to
capture the overall popularity distribution in the web trace file.

We measure the simulated hit ratio and external bandwidth
savings when the per-node cache storage size varies. Since
the cache replacement strategy is implemented with LRU
algorithm, the rarely requested contents in the local cache store
are always replaced with the new incoming popular contents
which are more frequently requested and be more possibly
cached in the local cache store. Obviously the larger storage
size of local cache store can accommodates more replicas, and
increase the hit ratio, as shown in Figure 7(b). The average
hit ratio in Figure 7(b) is stable after around 7 days. For the
missed requests, we calculate the data size of such URL as the
consumed external bandwidth, shown by Figure 7(c). From
Figure 7(b) and (c) we can find that the larger local cache
store size setup in each node can make the average hit rate
and external bandwidth be stable in the a shorter period than
the smaller allocated cache store.

In addition, we compute the overloading rate of a node as
the rate of the maximal number of requests in such peer over
the average number of request. In the above experiment, we
find the overloading rate in the first day, 7.23, is gradually
reduced and it becomes only 1.50 in last day.

5.5 Evaluation of PRing
To evaluate PRing, we respectively use the numeric results
computed by Matlab, and simulation results by the event
driven simulator. For Matlab result, we synthetically generate
the node popularity pi distribution following the Zipf distribu-
tion when the Zipf parameter α is given and the total number
of links D (including alinks and llinks) is equal to (N · log N).
In order to compare with the Matlab results, we use the same
synthetic data for simulation. By the same synthetic data, we
can validate whether the simulation results are consistent with
the simulation results.

Numeric Results: When the values of node count N , and
the entropy of node popularity pi are given, the average lookup
hops H and the acceleration ratio γ in Equations 14 and 15 can
be numerically solved. Figures 8(a) and (b) respectively plot
the numeric values of γ and H for a given Zipf parameter

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 13

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

A
vg

 L
oo

ku
p

H
op

s

Time (days)

 Regular
 PCACHE

2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5
 Cache Size Per Node=10000
 Cache Size Per Node=500

A
vg

 H
it

R
at

e

Time (days)
2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

 Cache Size=10000 Per Node
 Cache Size=500 Per NodeE

xt
er

na
l B

an
dw

id
th

(G
)

Time(days)

(a) Average Lookup Hops (b) Average Hit Rate(%) (c) External Bandwidth(GB)

Fig. 7. PCache in PlanetLab

value α = 0.95. We can find that for the optimal numeric
result, a larger number of node count N can make a less
value of acceleration ratio γ. It means fewer links are allocated
for acceleration links (alinks); also the larger value of Zipf
parameter α, i.e the more skewed popularity distribution,
makes the larger value of γ, meaning more alinks are allocated
for the popular nodes. However, due to the optimal assignment,
not all links are assigned as the alinks for a few number of
highly popular nodes. For example, for α = 1.15 and N=8192,
the numeric value of γ is equal to 0.1562. It means that the
majority of links are assigned to the regular long links (llinks)
and a small fractions of links are for alinks. This result is
important for PRing to avoid the extremely skewed linkage
distribution.

Furthermore, by calculating the entropy value of pi, we find
the entropy value of pi is the primary factor in Equation 15;
when N grows, the entropy of pi also grows and H then grows.
Figures 8 (c) and (d) respectively show the values of γ and
H by varying α with N = 2048 and N = 8192. We find that
with a fixed node count N , the value of H is decreased when
the popularity distribution becomes more skewed (i.e. a larger
value of α). For α = 2.15, H approach 1.

Simulation Results: In simulation experiments, we vary the
value of acceleration ratio γ, Zipf parameter α, and node count
N to generate multiple topologies. With a given value of Zipf
parameter α to produce the values of popularity pi, we assign
each node in the generated P2P topology with some popularity
pi. By Equations 14 and 15, each node is assigned with the
regular number of llinks and the irregular number of alinks.
The node assigned with a high value of pi will receive more
requests to simulate the skewed popularity. For γ = 1.0, all
links are assigned for alinks and none for llinks, resulting in
the O(N) average search cost H. To avoid the high search
cost O(N) of γ = 1.0, we still allocate N llinks to make sure
each node has k = 1 llink. Under each generated topology,
we evaluate the average lookup hops H as the performance
metric of such topology.

Effect of Acceleration Ratio: In this experiment, we vary the
value of the acceleration ratio γ between [0.0,1.0) respectively
for N = 2048 and N = 8192. Figure 9(a) shows that the link
allocation with 0.1 ≤ γ ≤ 0.3 can achieve the minimal search
cost H. Compared with the numeric results in Figure 8(a), the
numeric values of γ = 0.145 for N = 2048 and γ = 0.130 for
N = 8192 consistently fall within the range 0.1 ≤ γ ≤ 0.3 of
simulation results.

Effect of Popularity Skewness: In this experiment with

N = 2048, we vary the value of the Zipf parameter α
and respectively allocate the links with γ = 0, γ = 1,
and the optimal numeric value of γ by Matlab. Figure 9(b)
shows that the optimal value of γ can achieve the best
performance with varied skewness of popularity. When the
popularity distribution is extremely skewed with α = 2.152,
the average search cost H with γ = 1.0 is almost the same
as with the optimal γ. Intuitively, in this extreme case where
all searches target to the same destination node, all alinks are
placed from all nodes to one node with the highest popularity,
and H approaches 1. Compared with the numeric results in
figure 8(b), the simulation values in figure 9(b) follow the
numeric results.

Effect of Node Count N : In this experiment, we allocate
links by three cases: γ = 0, the optimal numeric value of γ
by Matlab and γ = 1. By conducting the searches following
the Zipf-based popularity distribution, Figure 9(c) plots the
average search hops H with the varied values of node count
N . It can be seen that the optimal allocation can achieve better
results than other tow cases with an equal number of links,
particularly for the case with γ = 0.0 which produces the
regular topology (i.e. Symphony and Chord).

Load Balancing: To study of the load distribution, we first
conduct the experiments for PRing; next, we adopt PCache to
PRing to show the effects of PCache. For an incoming request
having a URL, node ni servers the request in two following
cases: i) ni, as the home node of the URL, contains the raw
content of the requested URL; ii) ni, as the acceleration node
for the URL, contains the replica of the requested raw content.
For a node ni, we set the workload rate of ni, denoted as ωi,
to be the the number of incoming requests that are served by
node ni over all requests. For N = 2048, Figures 9(d) plots
the load distribution respectively of PRing itself with no cache
and PRing enhanced by PCache. The x-axis of Figure 9(d)
represents the workload rate and the y-axis represents the
percentage of nodes with a workload rate ωi within two
neighboring rates of x-axis in Figures 9(d).

In Figures 9(d), it is not surprised to find that the load
distribution of PRing with no cache is heavily tailed and is
basically consistent with the Zipf distribution. It is because
PRing is designed as an optimal topology to tradeoff between
long links (llinks) and acceleration links (alinks) as to a better
average search cost. In order to overcome the limitation of
unbalanced workloads, PCache can be used to enhance PRing

2. the value of α = 2.15 rarely appears in real applications. Here we
intentionally use it for the purpose of the performance study

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 14

0 10 20 30 40 50 60 70
0.10

0.12

0.14

0.16

0.18

0.20

A
cc

el
er

at
io

n
R

at
io

Node Count (*1000)

 Zipf =0.95

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0 Node Count = 2048
 Node Count = 8192

A
cc

el
er

at
io

n
R

at
io

Zipf Parameter

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

N
um

er
ic

 V
al

 o
f H

an

d
E

nt
ro

py
 o

f p
i

Node Count (*1000)

 Numeric Val of H
 Entropy of p

i

Zipf =0.95

0.0 0.4 0.8 1.2 1.6 2.0 2.4
0

1

2

3

4

5

6

7

8

N
um

er
ic

 V
al

 o
f H

an

d
E

nt
ro

py
 o

f p
i

Zipf parameter

 H with N=8192
 Entropy with N=8192
 H with N=2048
 Entropy with N=2048

(a) γ Vs N (b) γ Vs α (c) H and Entropy of pi Vs N (d) H and Entropy of pi Vs α

Fig. 8. Numeric Results of PRing

0.0 0.2 0.4 0.6 0.8 1.0
5

6

7

8

9

10

 N = 2048
 N = 8192

A
ve

ra
ge

 S
ea

rc
h

C
os

t H

Acceleration Ratio

 = 0.95

 0.145

0.130

0.0 0.4 0.8 1.2 1.6 2.0
0

4

8

12

16

20

 = 1.0
 = 0.0
 = optimal

A
ve

ra
ge

 S
ea

rc
h

H
op

s
H

Zipf Distribution Parameter

Node Count = 2048

0 10k 20k 30k 40k 50k 60k 70k

4

8

12

16

20

A
vg

 S
ea

rc
h

C
os

t H
Node Count N

 pring: = 1.0
 symphony(pring: = 0.0)
 chord
 pring: = optimal

1E-4 1E-3 0.01

0

10

20

30

40

50

60

%
 o

f N
od

es
 in

si
de

 L
oa

d
In

te
rv

al
s

Load Intervals

 PRING with no Cache
 PRING with PCACHE

N=2048, Zipf = 1.0

3E-5

(a) Effect of Acceleration Ratio γ (b) Effect of Zipf Parameter α (c) Effect of Node Count N (d) Load Distribution

Fig. 9. Simulation Results of PRing

with balanced workloads, as shown in Figure 9(d). Given
2048 nodes in this experiment, the average workload rate
of a node, denoted as ω, is equal to 1/2048, and we treat
the workload ωi with ω/5 ≤ ωi ≤ ω ∗ 5 as an allowable
workload; otherwise either as an overloaded workload or as an
underloaded workload. For PRing with no cache, only 49.58%
nodes have the allowable workloads; after PCache is adopted,
93.11% nodes have the allowable workloads.

6 RELATED WORK
In this section, we review the related work to ours in three
aspects: p2p networks and topologies, replica placement strate-
gies, and cooperative web caching.

Peer-to-Peer Networks and Topologies: A number of
peer-to-peer routing protocols have been proposed recently,
including Chord [28], Tapestry [32] and Pastry [26]. These
self-organizing and decentralized systems provide the func-
tionality of a scalable distributed hash-table (DHT), by reliably
mapping a given object key to a unique live node in the
network. The systems have the desirable properties of high
scalability, fault tolerance and efficient routing of queries.
These DHT-based P2P networks essentially use an HashID-
based prefix routing algorithm. Different from DHT-based
deterministic P2P networks, randomized P2P networks like
Symphony [20] and SkipGraph [4] choose the node neighbors
based on some probability distribution. In all of these struc-
tured P2P protocols, each node is regularly assigned with equal
O(log N) number of links, i.e. total N · O(log N) links, and
the average lookup hop number is guaranteed with O(log N).
Overall, these structured P2P are typically regular network
topologies with O(log N) links in each node.

Different from structured P2P, Freenet, Gnutella, Fast-
Track/KaZaA, BitTorrent, Overnet/eDonkey2000 are examples

of unstructured P2P which organize peers in a random graph
in flat or hierarchical manners (e.g. Super-Peers layer) and
use flooding or random walks or expanding-ring Time-To-
Live (TTL) search, etc. on the graph to query object stored by
overlay peers. Typically the topologies of these unstructured
P2P are irregular. For example, analysis in [24] shows that
Gnutella networks have topologies that are power-law random
graphs, and later measurement shows that there are too few
peers with a low number of connectivity. Networks with
power-law organizational structures, display an unexpected de-
gree of robustness [25], i.e. the ability of peers to communicate
unaffectedly by extremely high failure rates.

Replica Placement Strategies: Some works in P2P net-
works involve the placement of replicas or cached objects
for popular objects. CFS [10], a cooperative file system over
Chord [28], caches the popular objects along the lookup path
towards the home nodes where popular objects are originally
stored. In PAST [27], the storage system over Pastry [26], the
search for some object is redirected to the nearest replicas
of the targeted object. Such placement strategy is a ran-
dom scheme. Based on the replication level l, Beehive [21]
replicates the object copies to all nodes that have at least
l common prefixes matching with the object hash ID. As
a further extension of Beehive, the technical report [29] is
based on deterministic structured P2P; however, it is unknown
whether the approach in [29] can be adopted to the randomized
structured P2P systems (e.g. Symphony).

Unlike the heuristical schemes like CFS [10] and
PAST [27], both Beehive [21] and our work can provide
optimal solutions based on the analytical model. Compared
with Beehive [21], PCache can provide the closed form
solutions for both MAX PERF and MIN COST problems;
while Beehive only seeks for the approximate solution for

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 15

MIN COST problem. Moreover, there is no assumption on
the popularity distribution in our optimization solution; while
Beehive [21] provides the analytical solution only for the Zipf
distribution.

Our previous work [22] actually is an extension of CFS by
the proportional principle. However, though with the similar
proportional principle as PCache, the children at the same level
of the k-ary tree in [22] do not have the same opportunity
as the intermediate nodes to intercept the search towards the
destination node. Actually, Figure 3 of Section 2 shows that
the replicas placed in acceleration nodes closer the destination
node, with a higher probability, can intercept the search to the
destination node. Finally, as shown in Section 5.3, by placing
replicas in the acceleration nodes closer to the destination
node, PCache can perform better than CFS with a proportional
replication, which is the replication approach of [22].

Unlike our work with the purpose of accelerating the
search, [15] focused upon the load balancing issue by adaptive
replication. In addition, though offering a proportional repli-
cation in [5], the solutions are only based on some intuitive
observations, without any analytical bound.

In unstructured P2P networks, [8] proposes to optimize
search efficiency by replication, where the number of replicas
of an object is proportional to the square-root of the object
popularity. [9] presents a square-root topology for unstructured
P2P networks where the degree of a peer is proportional to
the square root of node popularity. Their results show that the
square-root principle can achieve the optimal performance by
the random walk search.

Cooperative Web caching: Cooperative Web caching is the
most common solution for augmenting the low cache hit rates
due to a single proxy. There has been extensive work on coop-
erative web caching system as a technique to reduce request
latency and to increase the hit rate. The design of cooperative
web caching systems can be hierarchical (Harvest [11] and
Squid [3]), hash ([17]), directory ([13]), and multicast ([30]).
Different from these systems which still require a dedicated
proxy infrastructure, P2P based web cache systems completely
eliminate the need of proxy servers. Squirrel [16] aims to
replace central demand-side web caches; however, a passive
web cache system over Pastry [26], it does not consider the
skewed popularity and performance optimization. Kache [18]
is a cooperative web caching system built over Kelips [18]-
based P2P overlay network and it can perform a lookup in
one hop but with a high maintenance cost of O(

√
N) peers

in each node.

7 CONCLUSION

In this paper, we present a novel resource placement strategy
which can be applied in randomized and deterministic struc-
tured P2P networks. By this strategy, we propose the optimal
web caching scheme, PCache, and the optimal ring structure,
PRing, respectively. Our main contributions are formally an-
alyzing the greedy search algorithm with the consideration
of skewed popularity, and developing a resource allocation
solution which can optimally tradeoff the performance gain
and paid cost. The extensive evaluations demonstrate the

effectiveness of PCache and PRing, with better results than
existing works.

ACKNOWLEDGMENT

Funding for this work was partially supported by Hong
Kong RGC Grants under Project 611608, NSFC Grants under
Projects 60736013 and 60873011.

REFERENCES
[1] In ftp://ircache.nlanr.net/Traces/DITL-2007-01-09.
[2] In http://ita.ee.lbl.gov/html/contrib/BU-Web-Client.html.
[3] In http://squid.nlanr.net.
[4] J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.
[5] I. Bhattacharya, S. R. Kashyap, and S. Parthasarathy. Similarity

searching in peer-to-peer databases. In ICDCS, pages 329–338, 2005.
[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching

and zipf-like distributions: Evidence and implications. In INFOCOM,
pages 126–134, 1999.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. T. Rowstron. One
ring to rule them all: service discovery and binding in structured peer-
to-peer overlay networks. In ACM SIGOPS European Workshop, pages
140–145, 2002.

[8] E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. In SIGCOMM, 2002.

[9] B. F. Cooper. An optimal overlay topology for routing peer-to-peer
searches. In Middleware, 2005.

[10] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. In SOSP, 2001.

[11] F. Douglis and T. Ball. Tracking and viewing changes on the web. In
USENIX Annual Technical Conference, pages 165–176, 1996.

[12] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul. Rate
of change and other metrics: a live study of the world wide web. In
USENIX Symposium on Internet Technologies and Systems, 1997.

[13] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: A
scalable wide-area web cache sharing protocol. In SIGCOMM, pages
254–265, 1998.

[14] B. Godfrey and I. Stoica. Heterogeneity and load balance in distributed
hash tables. In INFOCOM, pages 596–606, 2005.

[15] V. Gopalakrishnan, B. D. Silaghi, B. Bhattacharjee, and P. J. Keleher.
Adaptive replication in peer-to-peer systems. In ICDCS, pages 360–369,
2004.

[16] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a decentralized
peer-to-peer web cache. In PODC, pages 213–222, 2002.

[17] D. R. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with
consistent hashing. Computer Networks, 31(11-16):1203–1213, 1999.

[18] P. Linga, I. Gupta, and K. Birman. Kache: Peer-to-peer web caching
using kelips. In In submission, June 2004.

[19] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In SIGMETRICS, 2002.

[20] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hash-
ing in a small world. In USENIX Symposium on Internet Technologies
and Systems, 2003.

[21] V. Ramasubramanian and E. G. Sirer. The design and implementation
of a next generation name service for the internet. In SIGCOMM, 2004.

[22] W. Rao, L. Chen, A. W.-C. Fu, and Y. Bu. Optimal proactive caching
in peer-to-peer network: Analysis and application. In CIKM, 2007.

[23] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A
scalable content-addressable network. In SIGCOMM, 2001.

[24] M. Ripeanu and I. T. Foster. Mapping the gnutella network: Macroscopic
properties of large-scale peer-to-peer systems. In IPTPS, pages 85–93,
2002.

[25] H. J. Rka Albert and A.-L. Barabsi. Error and attack tolerance of
complex networks. In Nature 406, pages 378–382, 27 July 2000.

[26] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, 2001.

[27] A. I. T. Rowstron and P. Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In SOSP,
2001.

[28] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM, 2001.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 20XX 16

[29] S. Tewari and L. Kleinrock. Entropy and search distance in peer-to-peer
networks. In UCLA Computer Science Dept Technical Report UCLA-
CSD-TR050049, November 2005.

[30] J. Wang. A survey of web caching schemes for the internet. In ACM
Computer Communication Review, 1999.

[31] P. Yalagandula and M. Dahlin. A Scalable Distributed Information
Management System. volume 34, pages 379–390, New York, NY, USA,
2004. ACM Press.

[32] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: a fault-tolerant
wide-area application infrastructure. volume 32, 2002.

[33] M. Zhong and K. Shen. Popularity biased random walks for peer-to-peer
search under the square root principle. In IPTPS, 2006.

Weixiong Rao studied in the Computer Science
and Engineering Department of the Chinese
University of Hong Kong from October 2005 to
April 2009 and passed the PhD defense in April
2009. He received the BS and MS degrees in
Mechanical Engineering from North JiaoTong
University and Shanghai JiaoTong University.
His research interests include distributed in-
formation dissemination, publish/subscriber sys-
tems and Peer-to-Peer computing.

Lei Chen received his BS degree in Computer
Science and Engineering from Tianjin University,
China, in 1994, the MA degree from Asian In-
stitute of Technology, Thailand, in 1997, and the
PhD degree in computer science from University
of Waterloo, Canada, in 2005. He is now an as-
sistant professor in the Department of Computer
Science and Engineering at Hong Kong Univer-
sity of Science and Technology. His research
interests include multimedia and time series
databases, sensor and peer-to-peer databases,

and stream and probabilistic databases. He is a member of the IEEE.

Ada Wai-Chee Fu received the BSc degree in
computer science from the Chinese University
of Hong Kong in 1983 and the MSc and PhD
degrees in computer science from Simon Fraser
University, Canada, in 1986 and 1990, respec-
tively. She worked at Bell Northern Research,
Ottawa, from 1989 to 1993 on a wide-area dis-
tributed database project. She joined the De-
partment of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong
Kong, in 1993. Her research interests include

database systems and data mining. She is a member of the IEEE.

Guoren Wang received his BSc, MSc and
PhD degrees, in computer science, from North-
eastern University, China, in 1988, 1991 and
1996, respectively. He was an assistant profes-
sor (March 1991 - March 1996) and an asso-
ciate professor (April 1996 - March 1999) in the
Department of Computer Science, Northeastern
University, China. Currently he is a professor in
the School of Information Science and Engineer-
ing, Northeastern University, China. His major
research interests are XML data management,

query processing and optimization, bioinformatics, high-dimensional in-
dexing, parallel database systems, and P2P data management. He has
published more than 80 research papers in international conferences
and journals.

