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Abstract  

A highly skewed microdata contains some sensitive 
attribute values that occur far more frequently than others. 
Such data violates the “eligibility condition” assumed by 
existing works for limiting the probability of linking an 
individual to a specific sensitive attribute value. Specifically, 
if the frequency of some sensitive attribute value is too high, 
publishing the sensitive attribute alone would lead to linking 
attacks. In many practical scenarios, however, this eligibility 
condition is violated.  

In this paper, we consider how to publish microdata under 
this case. A natural solution is “minimally” suppressing 
“dominating” records to restore the eligibility condition. We 
show that the minimality of suppression may lead to linking 
attacks. To limit the inference probability, we propose a 
randomized suppression solution. We show that this 
approach has the least expected suppression in a large family 
of randomized solutions, for a given privacy requirement. 
Experiments show that this solution approaches the lower 
bound on the suppression required for this problem.   
 

1 Introduction 
A person-specific microdata has the form T(QI, SA). QI is 
the quasi-identifier consisting of several public attributes 
(e.g., {birthdate, sex, Zip}) and SA is a sensitive attribute 
(e.g., Disease). Privacy is violated if it is possible to infer the 
value on SA of an individual via public knowledge on QI 
with a high probability [4][23].  To limit this inference, a 
common defence is imposing diversity on the values of SA, 
called the l-diversity principle [5]. Informally, an 
anonymized table T* is l-diverse if, for any individual I with 
a record in T, the maximum frequency of SA values in the 
anonymity group for I is no more than 1/l, where the 
anonymity group is defined as the set of candidate records for 
I in T*. Generalization [12] and bucketization [6] are two 
approaches for anonymizing T into l-diverse T*. Both 
approaches are based on partitioning the records into 
anonymity groups.  
 

1.1 Motivations 
However, not every table T has an l-diverse T*. For example, 
if 80% of the records in T have the disease HIV, there is no 
2-diverse T*. A necessary and sufficient condition for having 
an l-diverse T* is the eligibility condition [6]: no single SA 
value occurs in more than 1/l of the records in T. Let us call 
this condition l-eligibility. All previous works based on l-
diversity assume that T satisfies l-eligibility. On the other 
hand, there are practical scenarios in which l-eligibility is 
violated. Let us consider several scenarios.  
• Zipf’s law distribution: Many man made and naturally 

occurring phenomena are distributed according to Zipf’s 
law [18]: the frequency of an event is inversely 
proportional to its rank in the frequency table, or a small 
number of events are responsible for a large portion of 
occurrences. The same principle applies to microdata; 
therefore, it is not surpresing that certain sensitive attribute 
values (such as diseeas) are far more common than others. 

• Incremental publishing: Typically data are published 
incrementally over a period of time [19][20][22].  
According to the law of large numbers, a small size data 
has a large variance in various statistical properties.  
Specifically, the small incremental data at each timestamp 
tends to have more skewed sensitive attribute value 
distribution than the combined data over a larger time 
interval. For example, on the real life adverse drug reaction 
database1: if D[i] is published monthly, weekly and daily, 
we observed no violation of 6-eligibility, 4 % violation of 
6-eligibility, and 30% violation of 6-eligibility, 
respectively. 

• Small data size: Typically the published microdata is a 
small subset of records of an underlying database as a result 
of queries or sampling. For example, in the period of April 
16 2003 - May 8 2003, the average number of new Severe 
Acute Respiratory Syndrome (SARS) cases (including 
suspected cases) on each day is only 175. If each day’s 
cases must be published separately, such as for temporal 
pattern analysis, the distribution on the sensitive attribute 
will be easily imbalanced. 

                                                             
1http://www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/ 



Since previous work assumes l-eligibility, they do not 
provide a clue on how to publish l-eligibility violated T. In 
this paper, we consider the problem of restoring l-eligibility; 
once l-eligibility is restored, an existing method can be 
further applied to generate an l-diverse version. There are 
two key questions: how to restore l-eligibility while 
providing a privacy guarantee, how to restore l-eligibility 
with minimum modification to the data. Before answering 
these questions, we first consider several possible ways of 
restoring l-eligibility. In the following discussion, the term 
“non-dominant records” refers to records having infrequent 
SA values, and the term “dominant records” refers to records 
having the most frequent SA values.  

Solution 1: Add fake records on non-dominant SA 
values One way is adding fake non-dominant records. 
Unfortunately, this approach leaves the most frequent 
sensitive values unchanged in the published data, which 
allows the attacker to infer the most frequent sensitive value 
in the original data T. In addition, this approach alters the 
statistics for non-dominant records. This may have a major 
impact on utility because non-dominant records often are the 
research target [16].  

Solution 2: Delete non-dominant records An alternative 
is removing non-dominant records. This approach has a 
similar limitation to the first approach. 

Solution 3: Suppress some dominant records The third 
way is suppressing some dominant records. In many 
applications, especially data mining, suppressing some 
dominant records has very limited impact on the research 
target, which is usually about non-dominant records. For 
example, for a data set with 90% records having “Flu” and 
10% records having “H1N1”, the focus of the research is on 
classifying H1N1 patients. To obtain good classification 
results, often dominant records are under-sampled (i.e., 
suppressed) [15].  

In this paper, we consider suppressing dominant records to 
restore l-eligibility. At this point, it seems that we can 
minimally suppress dominant records until l-eligibility is 
restored. However, the next example shows that such 
suppression does not protect privacy. 

 
1.2 Eligibility Attacks 
Example 1 Figure 1 shows T with five sensitive values 
{S1:10, S2:4, S3:2, S4:1, S5:1}, ranked by the frequency. T 
violates 3-eligibility because 10>|T|/3=18/3, where |T| 
denotes the number of records in T. To restore 3-eligibility 
while minimizing the number of suppressed records, we 
iteratively suppress the records having the most frequent 
sensitive value. After suppressing 6 records for S1, TP in the 
center satisfies 3-eligibility for the first time. Si’ denotes the 
ith frequent sensitive value in TP. With TP satisfying 3-
eligibility, TP can now be anonymized by any existing 
method to achieve 3-diversity. The set of suppressed records 
TS is withheld from publication. ■ 

 

 
Figure 1 An example of minimum suppression 

However, given TP and the knowledge about the 
suppression algorithm used, an adversary can infer that only 
the two most frequent values S1’ and S2’ in TP can possibly 
be the most frequent value S1 in the original T. Suppose that 
the adversary also knows that T violates 3-eligibility, for 
example, by being told that some records are suppressed (for 
the purpose of validating the usefulness of data), which 
happens only if T violates 3-eligibility. Therefore, the 
adversary learns that one of S1’ and S2’ must have a 
frequency higher than 1/3 in T. This imposes a privacy threat 
for all individuals with a record in T.  

The root of the above attack is the minimality of 
suppression for producing TP, which leaves a small number 
of candidates for the most frequent sensitive value S1. The 
term eligibility attack refers to such inference of S1 from a 
published subset TP. 

1.3 Contributions 
We consider the following l-dichotomy problem. Given an l-
eligibility violated base table T, let S1 denote the most 
frequent SA value in T. We want to determine a partition 
{TP, TS} of T, where TP is for publication and TS is 
suppressed, such that the following conditions hold.  
• Privacy: TP is l-eligible and, for every sensitive value Si’ 

in TP, the posterior probability of Si’=S1, given TP and K, 
is bounded by 1/l.  K denotes the knowledge about the 
algorithm for producing {TP, TS}.  

• Utility: The number of records in TP is maximized while 
satisfying the above privacy requirement.  Since our 
approach is suppressing dominant records, this 
optimality minimizes the suppression of dominant 
records.  

The above problem has several novelties. First, it 
considers an l-eligibility violated base table T. To our 
knowledge, anonymzing such microdata has not been 
considered previously. Second, it considers the knowledge 
about the algorithm that produces TP. With such knowledge, 
l-eligibility of TP alone is not sufficient, as illustrated by 
Example 1. Third, once l-eligibility is enforced on TP, 
existing methods such as [5][6] can be applied to render TP l-



diverse. In this sense, our work makes existing works 
applicable to skewed data.  

The contributions of this work are as follows. We 
formulate the l-dichotomy problem (Section 2). We introduce 
two deterministic solutions (Section 3): one provides a lower 
bound on suppression but no privacy guarantee, and one 
guarantees privacy but suppresses too much data. Then, we 
propose a randomized solution (Section 4). We show that this 
solution has the least expected suppression in a large family 
of randomized algorithms (Section 5), and has a suppression 
approaching the lower bound (Section 6).  
 
1.4 Related Work 
We adopt the l-diversity [5] as the privacy notion. Previous 
works assume that the global distribution satisfies the special 
l-eligibility condition [6], and the focus is on limiting 
sensitive inference arising from the local distribution of 
anonymity groups. In the case that l-eligibility condition is 
not satisfied, no l-diverse table is produced. The work in [3] 
measures the privacy by the difference between local 
distribution and the global distribution. Thus a skewed global 
distribution is not considered sensitive. We consider a 
skewed global distribution on SA a privacy threat and have to 
deal with how to publish data with such distribution.   

Our work is related to privacy threats due to background 
knowledge such as [5][9][10]. The background knowledge 
previously considered is primarily additional information 
about QI and SA. We consider background knowledge about 
the algorithm used for producing TP and the knowledge about 
the violation of l-eligibility of the base table T. Such 
knowledge cannot be easily handled by previous works.  

The recent work in [7] dealt with attacks arising from 
minimality principles of anonymization algorithms. The 
motivations, assumptions, attacks, and problems in their 
work are different from ours. For example, [7] assumes that 
the global distribution satisfies the l-eligibility condition and 
deals with minimality attacks that arise from the 
anonymization for achieving l-diversity. We assume that the 
l-eligibility is violated and deal with eligibility attacks that 
arise from the skewness of global distribution on SA.  

Record suppression has been used to protect privacy 
previously [11][12][13][14]. In those works, records are 
suppressed because they are “outliers” for k-anonymity. In 
our works, records are suppressed because their sensitive 
values are too frequent. 

2 Problem Statement 
The base table T has several quasi-identifying attributes (QI) 
and one sensitive attribute SA. SA has m distinct sensitive 
values S1,…,Sm with the frequency order F1≥…≥Fm>0 (in the 
number of records). Si is the ith frequent SA value in T and 
has the ith rank. Table 1 summarizes the notations used in this 
paper. 

T is l-eligible if no more than |T|/l of the records shares a 
common SA value, i.e., F1 ≤|T|/l. A violating value refers to 
Si with Fi>|T|/l. We assume l≤m. Anonymized table T* 
consists of several anonymity groups, obtained by 
generalization [12] or bucketization [6]. T* satisfies l-
diversity, or is l-diverse [5], if for every anonymity group g in 
T*, the maximum frequency of any SA value in g is no more 
than 1/l. Note that l-eligibility of T coincides with l-diversity 
of T* if T* has a single anonymity group. 

l-eligibility of T is both necessary and sufficient for T to 
have an l-eligible T* [5][6]. If T violates l-eligibility, existing 
works cannot be applied to produce l-eligible T*. For this 
reason, existing works assume that T satisfies l-eligibility. In 
this paper, we consider T that violates l-eligibility. 

 
Table 1. Notations 

m The number of distinct sensitive values on 
SA. 

l The parameter for l-eligibility, l≤m. 
T The base table. |T| is the number of records in 

T. 
TP (TS) Published (Suppressed) subsets of T. 
Si, Fi Si - the ith frequent sensitive value in T; 

Fi - the frequency of Si in T. 
Si’, Fi’ Si’ - the ith frequent sensitive value in TP;  

Fi’ – the frequency of Si’ in TP. 
 

Suppose that T violates l-eligibility, i.e., F1>|T|/l. We want 
to determine a partition {TP,TS} of T (i.e., T= TP∪TS and 
TP∩TS=∅) such that TP is l-eligible and is for publication and 
TS is withheld from publication. Let S1’,…,Sm’ denote the SA 
values in TP with their frequency order F1’≥….≥ Fm’. Note 
that Fi ≥Fi’, i=1,…,m. We represent the frequency of SA 
values in T by {S1:F1,…,Sm:Fm} and represent the frequency 
of SA values in TP by {S1’:F1’,…,Sm’:Fm’}. 

Adversary Knowledge The attacker has access to the 
published TP, therefore, knows the rank S1’,…,Sm’ in TP with 
F1’≥….≥ Fm’. But the attacker has no access to T or TS. The 
attacker has the following knowledge, denoted by K. 

 
 K1: The algorithm used to produce TP.  
 K2: |T|. In practice, the researcher may be told the 

number of records suppressed, i.e., |TS|, for validating 
the usefulness of data. Therefore, the original size |T| is 
likely public. From |T|>|TP|, the adversary also knows 
that the original data T is not l-eligible (i.e., F1>|T|/l), 
otherwise, |T|=|TP|.     

 
As for the knowledge on the most frequent sensitive value S1 
in T, there are two cases. In the first case, the adversary 
knows S1 in T before any data is published. In this case, even 
when no data is published, the adversary can infer S1 with a 
probability higher than 1/l; thus, no method can provide 



protection. In the second case, the attacker does not know the 
most frequent sensitive value S1 in T before seeing TP. The 
attack occurs when the attacker can infer Si’=S1 (i.e., some 
value Si’ in TP is S1) after seeing the published TP. This is the 
case we consider in this paper. We denote this posterior 
probability by Pr(Si’=S1|TP, K). Our goal is to limit 
Pr(Si’=S1|TP, K) while publishing as many non-dominant 
records as possible. We formalize this problem below.  

Definition 1 (l-Dichotomy) Consider an l-eligibility 
violated T and a partition {TP, TS} of T. Let S1 denote the 
most frequent SA value in T. We say that (TP, K) satisfies l-
dichotomy if both of the following conditions hold: 

 P-Eligibility: F1’≤|TP|/l, that is, TP is l-eligible. The term 
“P-Eligibility” comes from the fact that this condition is 
on the published table TP. 

 S-Ambiguity: Pr(Si’=S1|TP,K)≤1/l, i=1,…,m. The term 
“S-Ambiguity” comes from the fact that this condition 
is on the suppression algorithm. 

The l-dichotomy problem is to find a partition {TP,TS} such 
that (TP,K) satisfies l-dichotomy, and as many non-dominant 
records as possible are published in TP.■ 

The definition of S-Ambiguity does not suggest an 
efficient test of the condition. To address this problem, we 
consider an implied condition that can be tested efficiently. 
Consider an l-eligibility violated T, i.e., F1>|T|/l, and a 
partition {TP, TS} of T. If Si’ is S1, Fi’+|TS|≥F1, because the 
frequency of S1 in TS is no more than |TS| and the frequency 
of S1 in TP is equal to Fi’. Therefore, to provide S-Ambiguity, 
there must exist at least l candidates Si’ such that 
Fi’+|TS|>|T|/l; otherwise fewer than l values Si’ can possibly 
be S1, which implies Pr(Si’=S1| TP, K)>1/l. Since F1’≥…≥ 
Fl’≥…≥ Fm’, this condition is stated as the l-candidacy 
condition below.  

Definition 2 (l-Candidacy) We say that (TP, K) satisfies 
l-candidacy if Fl’+|TS|>|T|/l. ■ 

From the above discussion, S-Ambiguity implies l-
candidacy. The converse is not true. (TP,K) in Example 1 
with l=3 provides a counter-example. (TP,K) satisfies l-
candidacy because Fl’+|TS|=2+6>|T|/l =18/3. However, as in 
Example 1, (TP,K) violates S-Ambiguity.  

Corollary 1 S-Ambiguity implies l-candidacy. The 
converse is not true. ■ 

P-Eligibility states that the most frequent sensitive value 
S1’ in TP is not too frequent, whereas l-candidacy says that 
the next l-1 frequent values in TP, i.e., S2’,…,Sl’, are not too 
infrequent (otherwise they will be disqualified for being S1). 
We will show that, for the randomized algorithm in Section 4, 
l-candidacy and P-Eligibility together will guarantee S-
Ambiguity. 

3 Deterministic Suppression 
The deterministic suppression in Example 1 always 
suppresses a record for the most frequent value S1’ in TP, 

which minimizes the number of suppressed records for 
satisfying P-Eligibility. On the other hand, it is this 
minimality that compromises S-Ambiguity, as illustrated in 
that example. Nevertheless, this deterministic suppression 
serves an important building block in our randomized 
algorithm and provides a lower bound on suppression for 
achieving S-Ambiguity. In this section, we present a formal 
analysis of this deterministic suppression. 

Consider a record r in TP having the value Si’. The level of 
r refers to the frequency Fi’ of Si’ in TP (in number of 
records). The level of TP refers to the highest level of the 
records in TP, i.e., F1’. top(TP) denotes the set of distinct 
sensitive values in TP that have the highest level in TP.  
 
3.1 D-suppression 
Figure 2 presents the general form of the deterministic 
suppression, called D-suppression.  Starting with TP=T, D-
suppression iteratively suppresses a record for a sensitive 
value in top(TP), the lowest rank first if there are more than 
one value. In other words, it always suppresses a record 
having the highest frequency in TP. The suppressed records 
are contained in TS. We will consider several stop conditions 
shortly.  

 

 
Figure 2 D-suppression 

 
Example 2 Consider T in Figure 1. Initialize TP to T and 

top(TP)={S1}. After suppressing 6 records for S1, TP is at 
level 4 and top(TP)={S1,S2}. Then D-suppression suppresses 
one record for S2 because S2 has a lower rank than S1 in T, 
and then suppresses one record for S1 because top(TP)={S1}. 
■ 

We say that an algorithm stops at a level F if TP produced 
is at the level F, i.e., F1’=F; an algorithm stops at the start of 
a level F if it stops at the level F without suppressing any 
record at the level F.  

Property 1 Consider TP during the course of D-
suppression, 
1. (Order Preservation) D-suppression preserves the “≥” 

order of frequency in T. As a result, S1 is always 
contained in top(TP). Therefore, for every Si’∈top(TP), 
Pr(Si’=S1|TP,K)=1/|top(TP)|, and for  every Si’∉ top(TP), 
Pr(Si’=S1|TP,K)=0.  

2. (Least Suppression) D-suppression stopping at the start of 
the level F has the least suppression among all 
algorithms stopping at the level F.  

D-suppression: 
Input: l-eligibility violated T. 
Initialize TP to T and initialize TS to ∅. 
While Stopping condition not true do 
      Choose Sj from top(TP) 
      Move one record for Sj from Tp to TS. 



From Property 1(1), S-Ambiguity is compromised if D-
suppression stops with |top(TP)|<l. From Property 1 

Property 1(2), D-suppression has the least suppression 
among all algorithms stopping at the same level. This 
property allows us to obtain a lower bound on the number of 
suppressed records for the deterministic suppression. Below, 
we identify two interesting stopping conditions of D-
suppression. 

 
3.2 Safe D-Suppression 
Safe D-suppression refers to D-suppression that stops when 
the combination of P-Eligibility and S-Ambiguity is achieved 
for the first time. Let FSafe and XSafe denote the level of TP and 
the suppression when Safe D-suppression stops. The next 
theorem tells that Safe D-suppression always stops at the start 
of the level Fl.  

Theorem 1 (Safe D-suppression) Safe D-suppression 
stops at the start of the level Fl, i.e., FSafe= Fl .■ 

Proof: We show that the start of the level Fl is the first 
time where the combination of P-Eligibility and S-Ambiguity 
is achieved. From  

Property 1(1), Pr(Si’=S1|TP,K) =1/|top(TP)|. Consider the 
TP produced when D-suppression stops at the start of the 
level Fl. At this point, all of S1,…,Sl are suppressed to the 
level Fl, thus top(TP) contains S1,…, Sl and Pr(Si’=S1|TP,K)≤ 
1/l, so S-Ambiguity is satisfied. Also, |TP|= l×Fl +∑i>l Fi, thus 
Fl ≤ |TP|/l, so P-Eligibility is satisfied. At any level above Fl, 
top(TP) contains at most S1,…, Sl-1, so |top(TP)|<l, from  

Property 1(1), S-Ambiguity is not satisfied. � 
Safe D-suppression achieves S-Ambiguity by suppressing 

all of the l most frequent values S1,…,Sl to the frequency Fl . 
For a small Fl and a large l, this will suppress too many 
records. In Example 1, with l=3, this means suppressing 8 
records for S1 and 2 records for S2, which is more than half of 
the data. Although Safe D-suppression provides a solution, it 
loses too much information. 

 
3.3 Unsafe D-suppression 
Unsafe D-suppression refers to D-suppression that stops 
when the combination of P-Eligibility and l-candidacy is 
achieved for the first time. Let FUnsafe denote the level when 
Unsafe D-suppression stops and XUnsafe denote the 
suppression by Unsafe D-suppression.  

Example 3 Consider D-suppression on T in Figure 1 with 
l =3. After suppressing 5 records for S1, l-candidacy is 
achieved for the first time: F3’+|TS|=2+5>|T|/l=18/3. After 
suppressing one more record for S1, P-Eligibility is achieved 
for the first time at the start of level 4. Unsafe D-suppression 
stops right here with FUnsafe = 4 and XUnsafe=6. S-Ambiguity is 
not satisfied until D-suppression continues to the start of the 
level F3 =2. This is where Safe D-suppression stops, with 
FSafe=2 and XSafe=10. ■ 

Theorem 2 (Unsafe D-suppression) The suppression by 
any algorithm that achieves both P-Eligibility and l-
candidacy is at least XUnsafe.■ 

Proof: D-suppression always suppresses the record at the 
highest level in TP in each iteration. Such suppression most 
effectively reduces the level F1’ of TP for achieving P-
Eligibility F1’≤|TP|/l. Also, such suppression leaves Fl’ at the 
highest possible level for a given suppression size |TS|, thus 
requires the least suppression |TS| to achieve l-candidacy 
Fl’+|TS|>|T|/l.� 

Recall that S-Ambiguity implies l-candidacy (Corollary 1). 
Therefore, from Theorem 2, Unsafe D-suppression provides a 
lower bound on suppression for achieving l-dichotomy, that 
is, no algorithm for achieving l-dichotomy can have less 
suppression than Unsafe D-suppression. A solution is 
considered interesting if its suppression approaches this 
lower bound and is much less than the suppression of Safe D-
suppression. Note that Unsafe D-suppression does not 
provide a solution because it does not guarantee S-Ambiguity 
(Example 3). In Section 4, we shall show that Unsafe D-
suppression provide S-Ambiguity when it is used by a 
randomized algorithm. 

4 Randomized Suppression  
Safe D-suppression guarantees l-dichotomy at the cost of 
suppressing all of S1,…,Sl to the level Fl. Unsafe D-
suppression has a small suppression but fails to achieve S-
Ambiguity. The problem with both is their deterministic 
nature of suppression, which leads to either excessive 
suppression or a clue left on TP to infer S1. We now address 
this problem addressed by introducing randomness into the 
suppression of S1. In this section, we present such a 
randomized algorithm, R-suppression. In Section 5, we show 
that R-suppression has the least suppression in a large family 
of randomized algorithms.  

 
4.1 R-suppression 
R-suppression has two steps. In the first step, it suppresses 
S1 to a random level. In the second step, it suppresses records 
deterministically to achieve l-dichotomy like Unsafe D-
suppression. This algorithm is given in Figure 3.  

STEP-1 (Randomization Step) suppresses S1 randomly 
so that, after the suppression, any of the most frequent values 
S1’,…,Sl’ on TP can possibly be S1 with a bounded 
probability. Specifically, it picks a random number h from 
1..l and then suppresses S1 to a random level F chosen 
uniformly from the interval [Fh+1, Fh]. After the suppression, 
S1 becomes Sh’ on TP. The probability for picking h is equal 
to 1/l. The uniform distribution of F in [Fh+1, Fh] ensures that 
the attacker gains no new information from where S1 is likely 
to be suppressed to in the interval [Fh+1, Fh].  



STEP-2 (Deterministic Step) calls for D-suppression to 
suppress more records from TP to achieve P-Eligibility and l-
candidacy.    

 

Figure 3 R-suppression 
 

Example 4 Consider the example in Figure 1. Recall 
T={S1:10, S2:4, S3:2, S4:1, S5:1} and l=3. Suppose that the 
random choice in STEP-1 of R-suppression is h=2 and F=3, 
that is, it picks the interval [F3,F2]=[2,4] and the level F=3 
from  [F3,F2]. S1 is suppressed to F=3 in STEP-1. Now 
TP={S1’:4, S2’:3, S3’:2, S4’:1, S5’:1}. STEP-2 calls for D-
suppression to further suppress some records to satisfy P-
Eligibility and l-candidacy. STEP-2 stops with TP={S1’:3, 
S2’:3, S3’:2, S4’:1, S5’:1} where P-Eligibility and l-candidacy 
are satisfied for the first time. ■ 

Two questions about R-suppression must be answered.  
First, are P-Eligibility and l-candidacy in STEP-2 sufficient 
for achieving l-dichotomy? We will show in Section 4.2 that, 
with the randomization in STEP-1, the answer is yes. Second, 
does R-suppression provide the least suppression among 
randomized solutions? We will present a proof of this 
optimality in Section 5. 

 
4.2 l-Dichotomy of R-suppression 
We show that R-suppression achieves P-Eligibility and S-
Ambiguity (therefore, l-dichotomy). P-Eligibility is enforced 
in STEP-2. We focus on S-Ambiguity. Prior to the proof, we 
first illustrate how Pr(Si’=S1|TP,K) is determined from the 
adversary’s point of view, TP and K.  

Example 5 Continue with T={S1:10, S2:4, S3:2, S4:1, S5:1} 
and TP={S1’:3, S2’:3, S3’:2, S4’:1, S5’:1} in Example 4. 
Recall that the adversary has access to TP, not T. With the 
knowledge K, the adversary knows |T|-|TP|=8 records are 
suppressed. Any base table B that is consistent with the 
knowledge K and the observed TP would be “plausible”. 
From the knowledge on R-suppression, S1 is among the three 
most frequent values in TP. This means that the 8 suppressed 
records can have any distribution of S1’, S2’ and S3’.  

For example, one plausible base table is B={S1’:11, S2’:3, 
S3’:2, S4’:1, S5’:1}, assuming that all 8 suppressed records 
have S1’. For this B, S1’=S1. Given this B, R-suppression can 
produce the observed TP by choosing h=1 and any F∈[3,11]. 

Similarly, by assuming that all 8 suppressed records have S2’, 
there is another plausible base table B in which S2’=S1. The 
third plausible base table B is {S3':10, S1':3, S2':3, S4':1, S5':1}, 
assuming that all 8 suppressed records have S3’. However, S1 
cannot be S4’ because S1 must be among the three most 
frequent values in TP.  

Since all these reconstructions of the base table are 
plausible, the adversary cannot exclude any of S1’, S2’ and 
S3’ as the candidate of S1. Without further information, the 
adversary cannot tell which reconstruction is more likely. 
Therefore, Pr( Si’=S1|Tp, K) = 1/3, where i=1,2,3. ■ 

Theorem 3 (l-Dichotomy of R-suppression) For TP 
produced by R-suppression, (TP,K) satisfies P-Eligibility and 
S-Ambiguity (thus, l-dichotomy).■ 

 The proof is given in Appendix. 

5 Optimality Of R-Suppression 
We show that R-suppression has the least expected 
suppression in a large family of randomized algorithms, 
called R*-suppression family. This family contains all 
randomized algorithms that randomize the suppression of S1 
in the first step and deterministically suppress more records 
to satisfy l-dichotomy in the second step. The members vary 
in the specific procedures used in each step. R*-suppression 
is obtained from R-suppression in Figure 3 with the following 
modifications: 

STEP-1: pick an integer h from 1..m (instead of 1..l) at 
random with probability ≤ 1/l (which is possible because 
m≥l). This step bounds the probability of S1=Sh’ on TP by 1/l, 
for h=1..m. Any special case under this constraint gives rise 
to an instance of this step. For example, STEP-1 of R-
suppression is the special case where h is picked from 1..l 
with the equal probability 1/l.  

STEP-2: replace “D-suppression” with “any deterministic 
suppression algorithm” and replace “P-Eligibility and l-
candidacy” with “l-dichotomy”. Any choice of a 
deterministic algorithm gives rise to an instance. For example, 
R-suppression chooses D-suppression. 

Each combination of the choices in STEP-1 and STEP-2 
gives rise to a member in the R*-suppression family. 
Obviously, R-suppression is a member in this family.  

Since R is a randomized algorithm, its execution is on an 
random instance. Let Ri denote the random instance of R-
suppression with i being the initial suppression of S1 at 
STEP-1, i.e. i= F1−F where F is the level for S1 chosen in 
STEP-1. Let Xi be the total suppression by Ri in the two steps. 
Let X be the random variables for Xi, and E(X) be the 
expected value of X, respectively. Similarly, Ri*, Xi*, X and 
E(X*) denote the counterparts for R*-suppression. 

Theorem 4 (Optimality of R-suppression) E(X)≤E(X*).  
That is, R-suppression has the least expected suppression in 
the R*-Suppression family. ■ 

Proof: The intuition is that R-suppression has a higher 
probability for a smaller initial suppression of S1 in STEP-1 

R-suppression: 
Input: l-eligibility violated T, and l. 
Output: TP. 
STEP-1: Let TP be T. (1) Pick an integer h from 1..l at 
random with equal probability 1/l. (2) Pick a level F at 
random uniformly from [Fh+1, Fh]. (3) Suppress S1 to the 
level F on TP. 
STEP-2: Apply D-suppression to TP and stop when 
(TP,K) satisfies P-Eligibility and l-candidacy for the first 
time. Return TP. 



and maximally relies on the most effective D-suppression in 
STEP-2 to achieve P-Eligibility and l-candidacy. More 
formally, for any initial suppression i of S1 in STEP-1, if i≤F1 
-Fl+1, Pr(Ri)≥Pr(Ri*), and if i> F1 -Fl+1, Pr(Ri)=0. From 
Theorem 2, for every initial suppression i in STEP 1, we have 
Xi≤Xi*. Note ΣiPr(Ri)= ΣiPr(Ri*)=1. Together, these imply Σi 
Pr(Ri)×Xi≤ Σi Pr(Ri*) ×Xi*, thus E(X)≤E(X*). � 

6 Empirical Study 
In this section, we evaluated the suppression of R-
suppression empirically on both real life data and typical data 
distributions. For a given solution {TP,TS}, we measure the 
distortion by Suppression Rate defined as |TS|/|T|, i.e., the 
percentage of records suppressed, where |T|=|TP|+|TS|. Since 
our approach prefers suppressing records for dominant 
sensitive values (except for the random suppression of S1 in 
STEP-1) and we assume that records for non-dominant 
sensitive values have more utility, the suppression rate 
reflects the amount of dominant records suppressed. The 
smaller the suppression rate, the more records for non-
dominant records can be published. We compare the 
following suppression methods.  
 Safe D – Safe D-suppression, which provides a valid 

solution to the l-dichotomy problem.   
 Unsafe D – Unsafe D-suppression, which provides a 

lower bound on suppression for the l-dichotomy problem 
(Theorem 2). 

 R-sup – R-suppression. This is the proposed solution to 
the l-dichotomy problem. We report the average of 100 
random instances for R-suppression. We do not evaluate 
other members in the R*-suppression family as R-sup has 
the least expected suppression in this family (Theorem 4). 

We use Safe D and Unsafe D as references. R-sup is effective 
if its suppression rate approaches the lower bound of Unsafe 
D and is much lower than the suppression rate of Safe D. We 
conducted two experiments, one on real life data (Section 6.1) 
and one on two representative data distributions (Section 6.2). 
All experiments were implemented in C++ and run on a PC 
with 2.4GHz CPU, 512M memory and Windows XP. 

 
6.1 Sample based Publishing 
The first experiment simulates incremental data publishing 
by a series of samples drawn from the base population 
adapted from the real life data set Adults from UC Irvine 
Machine Learning Repository [1]. This data contains person-
specific records from the US Census, collected from real life 
US demographics, and has been used as a de facto 
benchmark [14]. After removing records with missing values, 
the resulting data contains 30,162 records. On the 
conservative side, we selected the “Occupation” as SA 
because it is the least skewed attribute (see Figure 4). SA has 
14 distinct values with the most frequent value having the 

relative frequency of 13.4%. Thus, there is no violation of l-
eligibility in the base population for l=6. 

 

 
Figure 4 Attribute value distribution (value vs frequency) 

Samples violating l-eligibility First, we examine how 
often l-eligibility is violated by a sample drawn from the 
Adult population. For a given sample size p (in fraction), we 
take 100 samples from the Adult data set. Each sample T has 
the size |T|= p×|Adult| and is taken by simple random 
sampling without replacement. T is a violating sample if T 
does not satisfy l-eligibility. Figure 5 plots the number of 
violating samples among 100 samples, for each pair of p and 
l values. 
 

 
Figure 5 Eligibility violations vs  p and l 

 
For a fixed l (i.e., the same color), with a small sample 

size p, the distribution of values on SA is skewed and there 
are more violating samples. For a fixed sample size p, a 
larger l sets a harder eligibility condition to satisfy, thus leads 
to more violating samples. For example, at p=0.5% or 150 
records, the percentage of violating samples is as high as 
40% for l=6. Such small sample size is likely for the reasons 
discussed in Section 1.1. Interestingly, these violations 
happen on samples though the underlying Adult data set as a 
whole does not violate l-eligibility for l=6. This result 
verifies our claim in Section 1.1 that l-eligibility is violated 
as the sample size decreases.  

We should mention that the Adult data set is only 
moderately skewed with the highest frequency being 13.4%. 
A typical distribution like those following Zipf’s law can be 
much more skewed (see Section 6.2). In those cases, we 
expect a more frequent violation of l-eligibility.  

Suppression Rate For each violating sample, we apply 
the above mentioned methods to study suppression rate. For 
the purpose of reference, we also include the distortion of 
suppressing all records in a sample if the sample violates l-



eligibility, denoted by “Suppress-All”. In fact, this is the 
“state-of-the-art” solution given that existing works consider 
only the case that l-eligibility is satisfied. 

For each setting of p and l, we compute the averaged 
suppression rate, (ΣiSRi)/n, where SRi represents the 
suppression rate of a violating sample i, and n is the total 
number of samples, which is 100 in our experiment. 
Intuitively, the averaged suppression rate is the percentage of 
data suppressed over all samples. Figure 6 and Figure 7 show 
the averaged suppression rate vs p and l, respectively. 

 

 
Figure 6 Suppression Rate vs p (l=6) 

 

 
Figure 7 Suppression Rate vs l (p=0.5%) 

 
In both Figure 6 and Figure 7, an outstanding trend is that 

R-sup suppresses only slightly more than the lower bound of 
Unsafe D for all p and l tested. Take the setting of p=0.5% 
and l=6 as an example. R-sup suppresses less than 3% 
records on each sample (on average), which is nearly 
identical to the suppression of Unsafe D. This result is 
encouraging in that Unsafe D serves a lower bound for 
achieving P-Eligibility and l-candidacy, which are necessary 
(but not sufficient) for achieving l-dichotomy. R-sup 
approaches this lower bound while guaranteeing the stronger 
l-dichotomy. 

On the other hand, R-sup suppresses much less than Safe 
D. For example, for the same setting of p=0.5% and l=6, Safe 
D suppresses more than 10% records of each sample (on 
average). And suppression goes up quickly for a smaller p 
and a larger l. This result confirms our expectation that Safe 
D’s naïve suppression to the level Fl loses too much data. 
Suppress-All is far worse than all other approaches.  

 
6.2 Zipf Distributions 

 
Besides real life data, we also consider some well-known 

data distributions. Many types of data studied in physical and 
social science follow Zipf’s law. In this experiment, we 

assume that the frequency Fi of sensitive values on SA 
follows this law: Fi=β/iα, where β>0 and α>0, i=1,…,m, 
where m is the number of distinct sensitive values. β, which 
is equal to F1, determines the scale of frequency but has little 
impact on the (relative) suppression rate. α determines the 
decreasing rate of Fi and is a major factor for eligibility 
violation. We use the default setting β=1000, α=1.0 and l=5.  
m=20. 

 

  
(a) vary α (l=5) (b) vary l (α=1) 

 
Figure 8 Suppression Rate under Zipf distribution 

 
Figure 8(a) shows suppression rate vs α. For α below 0.8, 

there is no eligibility violation. For a larger α, Fi decreases 
faster, and thus, causes more eligibility violation and requires 
more suppression. This can be seen from the high lower 
bound of Unsafe D. Even in this case, R-sup has about 20% 
less suppression than Safe D and stays close to the lower 
bound of Unsafe D.  

Figure 8(b) shows suppression rate vs l. Again, R-sup 
stays close to the lower bound of Unsafe D-sup and has much 
less suppression than Safe D. Interestingly, when l is 
increased from 4 to 6, suppression rate of Unsafe D decreases. 
This is because l-candidacy |TS|+Fl’>|T|/l requires less 
suppression when l increases, for a small l. However, when l 
is increased from 6 to 10, suppression rate increases because 
P-Eligibility F1

’≤|TP|/l dominates in this case. 
We also conducted experiments on linear distributions, 

but due to the space, the results are omitted. In general, we 
observed a similar trend as that on Zipf distribution, except 
that there are less eligibility violations and consequently 
require less suppression than the case of Zipf distribution.   

7. Conclusions 
To provide the protection of l-diversity, existing works 
assumes that the global distribution of sensitive values is not 
skewed. In several real life scenarios, this assumption is 
violated. In this work, we show that publishing a maximum l-
eligible subset may lead to the inference of the most frequent 
sensitive value in the original data, called eligibility attacks. 
We formulated the problem of preventing eligibility attacks 
while allowing more data for publication. We proposed a 
simple but effective randomized solution to this problem, i.e., 
R-suppression. R-suppression has the least expected 
suppression among a large family of randomized algorithms. 



On both real life data and common data distributions, our 
experiments showed that R-suppression approaches the lower 
bound on suppression required for this problem. 
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Appendix 
Theorem 5 (l-Dichotomy of R-suppression) For TP 
produced by R-suppression, (TP,K) satisfies P-Eligibility and 
S-Ambiguity (thus, l-dichotomy).■ 

To prove Theorem 5, we need to show Pr(Si’=S1| TP,K) ≤ 
1/l, for i=1,…,m, where TP is produced by R-suppression. 
The intuition is as follows. STEP-1 first establishes the prior 
belief that any of Si’ with i=1,…,l has equal probability being 
S1, i.e. Pr(Si’=S1|K) =1/l. This is why h and F are picked in 
the specific ways described in STEP-1, Figure 3. In STEP-2, 
this belief remains unchanged because D-suppression 
preserves the frequency order ( 

Property 1(1)) and l-candidacy ensures that the attacker 
cannot exclude any of Si’ with i=1,…,l as the candidates for 
S1 even after observing TP. As a result, Pr(Si’=S1| TP, K) =1/l 
for i=1,…,l. We now give a formal proof.  

Recall that the attacker has no access to T and TS, and 
infer Si’=S1 from the “view” (TP, K), where K is the 
knowledge defined in Section 2. Borrowed from Bayesian 
Theorem [2], we have the rewriting  

 
    (1) 

 
Here, Si’=S1 is the “hypothesis” the attacker tries to establish 
and TP is the “evidence”. Pr(Si’=S1|K) is the attacker’s prior 
belief in the hypothesis before observing the evidence TP. 
Pr(Si’=S1|TP, K) is the attacker’s posterior belief after 
observing the evidence TP.  

From STEP-1, the target interval [Fh+1, Fh] is randomly 
selected from the first l intervals with equal probability. So 
the prior belief Pr(Si’=S1|K) is equal to 1/l for i≤l, and 0 for 
i>l. Together with the uniform distribution of the level F in 



[Fh+1, Fh], STEP-1 injects sufficient randomness to bound the 
attacker’s prior belief on Si’=S1 by 1/l for i≤m.  

We show Pr(Si’=S1|TP,K) = Pr(Si’=S1|K) for i≤m, i.e., 
attackers’ belief is not changed after observing TP produced 
by STEP-2. From Equation (1), it suffices to prove Pr(TP|K) 
= Pr(TP|K, Si’=S1) for i≤l. That is, knowing that Si’ is most 
frequent in the base table does not alter the chance of TP 
being observed. Therefore, the next lemma and the above 
discussion imply Pr(Si’=S1|TP, K) ≤ 1/l, thus, Theorem 5. 

Lemma 1 Pr(TP |K) = Pr(TP|K, Si’=S1) for i≤l, where S1 is 
the most frequent sensitive value in the base table T and TP is 
produced by R-suppression. ■ 

Proof: Recall that K consists of the knowledge about R-
suppression and the knowledge on |T|. Let Ω(K) be the set of 
all eligible sets w that are produced by R-suppression from 
an l-eligibility-violated base table with size |T|.  All such w 
satisfy P-Eligibility and l-candidacy because they are 
produced by R-suppression. Let Ω(K, Si’=S1) be the set of all 
eligible sets w that are produced by R-suppression given 
Si’=S1 on w. Note that Ω(K, Si’=S1)⊆Ω(K), and TP is in both 
Ω(K) and Ω(K, Si’=S1). Without further knowledge, each 
eligible set in Ω(K) and Ω(K, Si’=S1) is equally likely, so 
Pr(TP|K) = 1/|Ω(K)| and Pr(TP|K, Si’=S1)=1/|Ω(K,Si’=S1)|. If 
we can show Ω(K, Si’=S1)⊇Ω(K), we have Pr(TP|K) = 
Pr(TP|K, Si’=S1). 

Consider any eligible set w in Ω(K). To show that w is in 
Ω(K, Si’=S1), we need to construct a “plausible” base table 
for w, say T*(w), where T*(w) violates l-eligibility and 
|T*(w)|=|T|, such that (i) Si’ is the most frequent sensitive 
value in T*(w), and (ii) w can be produced by R-suppression 
from T*(w). The construction of T*(w) is similar to those 
illustrated in Example 5. T*(w) contains all the records in w, 
plus |T|-|w| records all having the value Si’. We claim that 
T*(w) has the properties (i) and (ii). 

In T*(w), Si’ has the frequency Fi’+|T|-|w| and all other 
values Sj’, j≠i, have the same frequency as in w. l-candidacy 
of w implies Fi’+|T|-|w|>|T*(w)|/l, thus Si’ is a violating value 
in T*(w). Let S1(w) denote the most frequent value in T*(w). 
S1(w)=Si’. P-Eligibility of w implies that all other values Sj’ 
are not violating in T*(w). This implies part (i) above.  

For part (ii), consider the following instance of R-
suppression applied to the input T*(w). STEP-1 suppresses 
S1(w) to the level F=Fi’. This is possible since i≤l, there is a 
non-zero probability of picking F=Fi’ in STEP-1 because 
Fi’≥Fl+1. After STEP-1, the result is exactly w because all 
values in T*(w), except S1(w), have exactly the same 
frequency as in w. STEP-2 then returns w immediately 
because w satisfies both P-Eligibility and l-candidacy. This 
shows part (ii). � 

 


