Information Systems 35 (2010) 315-334

Contents lists available at ScienceDirect x
Information
Systems
Information Systems
journal homepage: www.elsevier.com/locate/infosys s

Query rewritings using views for XPath queries, framework,
and methodologies

Jian Tang **, Ada Waichee Fu®!

@ Department of Computer Science, Memorial University of Newfoundland, Elizabeth Ave, St. John’s NL, Canada A1B 3X5
b Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong

ARTICLE INFO

Article history:

Received 9 September 2006
Received in revised form

26 January 2009

Accepted 26 October 2009
Recommended by: Y. loannidis

Keywords:
XML

Query

View
Rewriting
Pattern
Containment
Embedding
Maximality

ABSTRACT

Query rewriting using views is a technique that allows a query to be answered
efficiently by using pre-computed materialized views. It has many applications, such as
data caching, query optimization, schema integration, etc. This issue has been studied
extensively for relational databases and, as a result, the technology is maturing. For XML
data, however, the work is inadequate. Recently, several frameworks have been
proposed for query rewriting using views for XPath queries, with the requirement that a
rewriting must be complete. In this paper, we study the problem of query rewriting
using views for XPath queries without requiring that the rewriting be complete. This
will increase its applicability since in many cases, complete rewritings using views do
not exist. We give formal definitions for various concepts to formulate the problem, and
then propose solutions. Our solutions are built under the framework for query
containment. We look into the problem from both theoretic perspectives, and
algorithmic approaches. Two methods to generate rewritings using views are proposed,
with different characteristics in terms of generalities and efficiencies. The maximality
properties of the rewritings generated by these methods are discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since it emerged as a language for information transfer
and storage late last century, XML has caught increasing
attentions from the research communities across different
disciplines for its flexible encoding schemes and expres-
sive power. Recently, due to the near completion of the
standardization of XQuery language [25], the usage of
XML has reached far beyond the simple information-
encoding domain. Such a broad adoption has led not only
to the developments of new paradigms, but also the
reformulations of some existing theories and methodol-
ogies in relational databases. One of the areas in which

* Corresponding author. Tel.: +17097374580; fax: +17097372009.
E-mail addresses: jlan@mun.ca (J. Tang),
adafu@cse.cuhk.edu.hk (A.W. Fu).
T Tel.: +85226098432; fax: +85226035024.

0306-4379/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.i5.2009.10.006

such a reformulation is in a pressing need is in query
processing. Due to the relatively complex structure of
XML documents compared with relation tables, efficiency
in querying XML documents has become one of the most
widely investigated topics in recent years.

XQuery employs XPath as its core sub-language for
navigating XML documents. In the query processing
literature for XML documents, therefore, a lot of attentions
have been in XPath processing. One approach is query
rewriting. It is a technique that allows a query to be
answered efficiently by using pre-computed materialized
views. It has many applications, such as data caching, query
optimization, schema integration, etc. This issue has been
studied extensively, in both theoretical and algorithmic
aspects, for relational databases. As a result, sound theories
and methodologies have been proposed in that context. For
XML data, however, the work is inadequate. Recently,
several frameworks have been proposed for query rewriting
using views for XPath queries, with the requirement that a

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.10.006
mailto:jian@cs.mun.ca
mailto:adafu@cse.cuhk.edu.hk

316 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

rewriting must be complete, being that all the answers to
the query running on the original database must be
generated by the rewriting running on the materialized
views [2,3,22]. Requiring a complete rewriting using views,
however, is not always realistic. The most prominent
scenario is in the area of schema integration. Local-as-view
(LAV) is an important strategy for schema integration in
database systems [8]. In the LAV model, queries are written
over a global schema (also called a mediated schema). Views
are queries that describe the contents of the local data
sources, and are also written over the global schema. The
model does not assume the existence of a separate ‘original’
data source. The direct goal of a query is to retrieve
information from the local data sources. To accomplish this,
it must be rewritten into some query that can run on the
local data sources and produce the answer it needs. Since
there is no original data source, ‘completeness’ of the query
results generated from the local data sources is not required.
Incomplete rewriting may also be useful in the case where
the original data are not conveniently accessible but a
materialized view is available. In this case, a user has an
option to use the materialized view to obtain an answer
which is only a proper subset of the answer he/she has
expected from the original data.

It is well known that if a rewriting using view is
complete, then the query and its rewritten version are
equivalent. Such an equivalence provides valuable in-
formation to guide an algorithm to generate the rewriting.
If the completeness requirement is removed, however, the
aforementioned information will not be available. This
makes generating a rewriting using views with desirable
properties a challenging task. In this paper, we study the
problem of query rewriting using views for XPath queries
without requiring the rewriting be equivalent to the
original query. We give formal definitions for various
concepts to formulate the problem. We look into the
problem from both theoretic perspectives, and algorith-
mic approaches, and then propose solutions. Our solution
is built on top of the theories for query containment. We
introduce the concept of ‘trap’, based on which two
methods to generate rewritings using views are proposed.
These methods have different characteristics in terms of
generalities and efficiencies. We describe conditions
under which our generated rewritings are optimal. The
class of the XPath queries that we consider in this paper
uses four kinds of symbols, /, /[, [-], and * which,
respectively, denote child axis, descendant axis, branches,
and wildcard. We denote this class by XP!/ /- U] "] The
query in this class can be described in a condensed
grammar as follows:

X = X/XIXIXIX[X]IL)*

where L denotes labels from an infinite symbol set. We
will omit tagging templates that normally accompany
XPath queries, and concentrate only on the navigation
scripts. This is because, technically, tagging templates and
navigation scripts are orthogonal, and the navigation
scripts are where the most technical sophistications arise
in the query rewriting.

The rest of the paper is organized as follows. In Section 2,
we propose a model, and introduce related concepts, and

then precisely define the problem. In Section 3, we
introduce two alternative solutions to the problem, and
discuss their strengths and limitations. In Section 4, we
describe the conditions under which the rewritings using
views generated by our methods are optimal. Section 5
concludes the paper by summarizing the main results,
and suggesting some issues for further study.

1.1. A motivating example

If the information required by a query has already been
included in the result of a materialized view, and there is a
way to retrieve it, then this usually will make the query
processing more efficient. Consider the XPath query /
publication/book[@review_id]//author/name. This query re-
quires the names of the authors of the books which belong
to the publication category and have a review_id attribute.
Let us consider three cases: (1) The view is /publication/
book. In this case the answer of the query is retrievable
from the result of the view. It is because, according to the
execution semantics, this query will return the entire sub-
tree rooted at each book node in the input document
tree. (2) The view is /publication|/@permit_no]/book. In this
case, we cannot retrieve a complete answer to the query
from the view result. This incompleteness is due to the lack
of data, and is intrinsic to the way the queries are
formulated. (3) The view is the same as that in the first
case, but the query is /publication/@permit_no]/book[@-
review_id|//author/name. In this case, the required informa-
tion is not retrievable. This is not due to the lack of data,
but due to the lack of knowledge: we do not know which
book in the view result is a child of a publication with
permit_no attribute. Obviously, the first case is most
preferable. However, given the way the queries are
formulated in the second case, if we can get everything
contained in the result that fits the user’s requirement, it
may still be useful if sufficient data is difficult to obtain.
Note that the problem arising in the third situation is
worse than that in the second case: we cannot retrieve any
answer without risking an error.

2. Concepts and definitions

In this paper, we will use the following notations. For
any tree or path t, |t| denotes the number of nodes in t. We
use <a,...,b> to denote a generic path which can be of any
length (in nodes), where a and b are the start and the end
nodes of the path, respectively, while {(a) and <aq, b)
denote a path with a length of one and two, respectively.
For two graphs, in particular, trees, we use the terms
‘isomorphic’, ‘equal’, ‘same’ interchangeably. Sometimes,
for easy presentation and notations, we will allow same
nodes (and associated edges) to belong to multiple trees,
and therefore avoid using isomorphism symbols on them.

2.1. Pattern tree and input tree

An XPath query can be denoted as a tree, called a
pattern tree (or simply pattern). Each node is attached
with a label, except for the root. The tree may contain

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334 317

ad Patternq; b

Pattern q, C

d Pattern q, e o

Fig. 1. Canonical models and canonical model mappings.

branches, and can contain two kinds of edges, parent/
child and ancestor/descendent, called C_edges and
D_edges, respectively. (A C_edge and a D_edge are
denoted by a single line and a double line, respectively,
in a pattern tree.) If there is a C_edge or a D_edge from n,
to n,, we say n, is, respectively, a C_child or D_child of n;.
(Or ny is a C_parent or D_parent of n,.)

Each node in the pattern tree is labeled, and there is a
special label *’, which is a wildcard meaning that the node
label can be any label. Among all the nodes in a query,
there is a distinguished node, called the return node. A
return node will be matched to a data node as the output of
the query. XPath queries execute on XML documents,
which can be modeled as labeled trees. In this paper, we
call them input trees (or simply trees). The execution
proceeds by matching the nodes in the pattern tree to the
nodes in the input tree, as explained in the next subsection.

2.2. Embedding and query containment

The concepts and notations in this subsection are from
[12]. Let g be a pattern and t be an input tree.

An embedding is a mapping e: nodes(q)— nodes(t) such
that

(1) e(root(q))=root(t),

(2) For any non-root node n e nodes(q), either la-
bel(n)="*, or label(n)=Ilabel(e(n)), and

(3) For any ny, ny € nodes(q), if nq is a C_parent of n,, then
there is an edge from e(n;) to e(ny); and if n; is a
D_parent of n,, then there is a path from e(n;) to e(n,).

For easy reference, we call condition 1 the root
condition, condition 2 the node condition and condition 3
the edge condition. For each n e nodes(q), we say e
matches n to e(n).

Let r be the return node in a pattern tree p. The set
anws(p, t)={e(r)|e: nodes(p)— nodes(t) is an embedding}
is called the answer to p on t. We say that pattern q is
contained in p, denoted as q< & p, if anws(q, t)= anws(p, t)
for all t. (To avoid confusing pattern containment from set
containment, unless otherwise mentioned, the expression
‘p contains q’ always refers to pattern containment for any
patterns p and q in this paper.)

A /\
v a (3)b
- g I't d@c
] d(é6>\b e

Fig. 2. Concatenating two patterns.

Let ¢, and g, be patterns, and g, contains m D_edges.
Let ii = <uy,...,Un», where for all 1<i<m, u; is a non-
negative integer. The ii-extension of q, for q; is a tree
formed as follows. First, make an identical copy of .
Then, select a symbol, say z, which is not labeled by any
node in q;. Finally, in the copy of g, replace the label *
with symbol z, and replace the ith D_edge, say ab, by a
path aib where / contains u; nodes, all labeled z. We call
a’b a rubber path? signifying that it can have different
lengths for different ii-extensions, the nodes in A rubber
nodes, and the number of rubber nodes in a/b the degree
of aib.

Given any ii-extension t of g, for q;, we use 7, to denote
the canonical model mapping that maps each node in g, to
its copy in t. Thus, 7, is a one-to-one onto mapping from
the nodal set of g, to the set of non-rubber nodes in t.
(Obviously, n; is an embedding.) If in ¢, for all 1<i<m,
u;=c, then t is referred as a c-extension. Call a path a star-
path in a pattern if all its nodes are labeled *, and incident
only with C_edges. A ii-extension of ¢ for ¢, is referred as
a canonical model of g, for q; if i = {uq,...,un > where for
all 1<i<m,O0<u;<L+1 and L is the length, in nodes, of the
longest star-path in q;. Thus, there are (L+2)™ canonical
models of g, for q;.

Consider the example in Fig. 1, where t; and t; are two
of the canonical models of g, for g;. The dotted lines,
indicated by m;and =, are the canonical model
mappings. There are two rubber paths in t;, <10, 11)
and <12,...,16), with degrees 0 and 2, respectively.
Nodes 14 and 15 are the rubber nodes in t;. Note that
path (25, the longest star-path in qq, has a length of 1.

2 The original work in [12] has not given a name to this concept.

318 J. Tang, A W. Fu / Information Systems 35 (2010) 315-334

pattern v emb. e; tree t

patternc emb. e, tree ey (3)

Fig. 3. Merge two embeddings into one.

Thus there are totally 9 canonical models of g, for q;.
From the figure, it is clear that a canonical model mapping
maps any node only to its copy, and therefore will never
map nodes to rubber nodes. This point is crucial for some
derivations in later sections.

2.3. Specification of the problem

Throughout this paper, we assume that when an XPath
expression returns a node from an input tree, it actually
returns the entire sub-tree rooted at that node, which
includes both the structure and the labeling. Thus, the
following statements are equivalent: ‘a return node
matches a sub-tree’ and ‘a return node matches the root
of a sub-tree’. Also, we assume that no other information
in addition to the result itself, such as the information
about the path, is returned. We believe this makes
practical sense since at the time when a query is run, a
user probably has no interest in obtaining extra informa-
tion that is unnecessary for his/her jobs.

Definition 2.1. Let v be a pattern and t be an input tree.
Let e: nodes(v)— nodes(t) be an embedding. Let ry be the
return node in v. The result of v on t under e, is result|v, t,
e]=e(ry).

The result of v on t under e denotes the output of r, under
e on t. Here, we treat the result of a pattern as part of the
input tree, not a separate document. In general there can be
multiple embeddings for v and ¢, and hence there can be
multiple results. We call the set of all such results the result
set. Given a query g, and the result set S of a view v from an
input tree t, we would like to find a set of queries Q to run
on result set S, such that the execution will generate the
maximal subset of the output set that the query would also
be able to generate should it run on the input tree t.
Forming the set of queries Q above is a rewriting
problem of g based on v. In our solution, we use the
concept of concatenation introduced in [22]. Let r, be the
return node in v, and c be a separate pattern from v. Assume
either label(root(c))=" or label(root(c))=1abel(r,). Then we

Fig. 4. An abstract view of rewriting.

can concatenate ¢ with v by merging root(c) with r,. The
merged node will have the same label as that for r,. If r, has
a child prior to the merge, it will keep the child after the
merge. The return node in ¢ will be the return node in the
new pattern. We call the new pattern a concatenated pattern
for c and v, and denote it by cev. (Note that r, will no longer
be the return node in c®v, unless root(c) is the return node
in ¢.) Shown in Fig. 2 is an example of concatenation, where
nodes 3 and 5 are merged.

Given an embedding e;: nodes(v)— nodes(t) and e;:
nodes(c)— nodes(e(r,)), (Recall e;(r,)=result(v, t, e;)) we
can merge e; and e, into a single embedding e:
nodes(cev)—nodes(t) in the following way: e(n)=eq(n) if
ne nodes(v), and e(n)=e,(n) if n € nodes(c)-root(c). Thus
e has the same effects as e; and e, combined. This is the
key point for using concatenation. An example is shown in
Fig. 3, where we duplicate the patterns and
concatenations from Fig. 2. The two embeddings
(denoted by broken lines) e; and e, are merged into
embedding e. Note that e;(3) denotes the sub-tree rooted
at 10, which is the result of pattern v running on tree t.
From the figure, we can see that since e, matches node 6
in pattern c to node 12 in tree e;(3), e matches node 6 in
pattern cov to node 12 in t also, and vice versa.

What does a concatenation have to do with rewriting?
Let us consider Fig. 4, where r. is the return node in both ¢
and cov. If for all t, and all embedding from c&v to t, there
is an embedding from q to t, such that r. and r, are
matched to the same node in ¢, then cev is contained in q.
Under this condition, we view c@v as a rewriting of g
using v. We will formalize this idea shortly.

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334 319

Fig. 5. {q}2 «{cov}ont.

Definition 2.2. Let Q; and Q, be two sets of patterns, and t
be an input tree. Then

1. Q; contains Qy on t if: vg,eQy, Ve,: nodes(qz)—
nodes(t), 3g; €Q;, 3e;: node(q,)— node(t), [e;(return_-
node(qq))=e,(return_nodes(q-))].

2. If Q; contains Q, on all t, then Q; contains Q..

3. If Q; contains Q, and Q, contains Qg, then Q; is
equivalent to Q.

The above definitions simply extend the traditional
pattern containment in [12] to sets of patterns.

Definition 2.3. Let q and v be patterns, and C be a set of
patterns. Let R={c®v|ceC}. Then

1. R is a rewriting for q using v if {q} contains R. In this
case, for each coveR, c is called a compensation for q
using v.

2. Ris a complete rewriting for q using v if {q} is equivalent
to R.

3. Ris a maximal rewriting for q using v if for all rewriting
R’ for q using v, R contains R'.

Informally, R is a rewriting for q using v if g generates all
the results that R generates. This captures the soundness
property. For a rewriting R, it is a complete rewriting if it
can generate all the results that q generates. It is maximal
if it can generate all the results that any other rewriting
generates. Clearly, if a complete rewriting exists, then the
maximal rewriting is necessarily complete.

Consider the example shown in Fig. 5. We duplicate
the concatenation from Fig. 3. We can see that fand e both
map the corresponding return nodes to the same node in
t. Since e is the only embedding from cov to t, by
Definition 2.2, {q} contains {c®v} on t. We now prove that
{q} contains {c®v}} on any tree t". This result will establish
that {q} contains {c®v}, and therefore, {c®v} is a rewriting
for q using v. Let ¢: nodes(cdv)— nodes(t') be any
embedding. We must have the following: (1) e’(1) is the
root of t', and e’(3) is labeled b and is a descendant of e’(1)
in t/, (2) €'(4) is labeled c, and is a child of ¢/(3) in t/, (3)
€'(6) is labeled d, and is a child of e/(3) in t'. Consider the
mapping f: nodes(q)— nodes(t') defined as: f(16)=e'(1),
f(17)=€'(3), f(18)=€'(6) and f(19)=€'(4). Clearly, f is an

embedding. Since 18 is the return node in g, and 6 is the
return node in cgv, by Definition 2.2.1, our claim follows.

Note that in this example, the rewriting contains only a
single pattern. In more complex case, however, it may
contain multiple patterns. (Refer to the examples in later
sections.)

Now, we can formally describe the problem: given
patterns q and v, how do we find a rewriting R for q using
v, and under what conditions R is maximal? In the
subsequent sections, we introduce our solutions.

3. Trap-based search methods

Let g and v be patterns. Searching for a rewriting for g
using v essentially requires searching for compensation
patterns. As shown in Fig. 4, a compensation pattern c is
the lower part, while v is the upper part, in concatenation
codv. Since ¢ must contain cv, we can partition g into a
lower and an upper portion in such a way that they
contain c and v, respectively. The question is how we do
the partition. This motivates the trap-based search
method.

3.1. Trap embeddings

3.1.1. Concepts

We now define a new kind of embedding, where a
distinguished symbol, #, is attached to some input tree. A
node labeled # in an input tree can be matched by any
node in the pattern.

Definition 3.1. Let q and t be a pattern and an input tree,
respectively. An embedding e: nodes(q)— nodes(t) is a
trap embedding if the following conditions hold true:

1 e(root(q))=root(t)
2 For any nenodes(q), either label(n)=*, or label(n)=
label(e(n)), or label(e(n))=#, and
3 For any ny, npenodes(q)
a. If there is a C_edge from n; to n,, then
if label(e(n))=#, then e(ny)=e(n;)
else there is an edge from e(n,) to e(ny)
b. If there is a D_edge from n; to n,, then
if label(e(n{)=#, then e(ny)=e(n;)
else there is a path from e(n;) to e(n,)

The definition differs from that of a normal embedding
only when a node is matched to a # node, in which case all
its descendants are matched also to that # node. For the
nodes in g not matched to the node labeled # in t, a trap
embedding is just a normal embedding defined at the
beginning of Section 2.2. Similar to the definition for a
normal embedding, we call conditions 1, 2 and 3 root,
node and edge conditions, respectively. Throughout the
remaining of the paper, we will use ‘embedding’ without a
preceding ‘trap’ to mean a normal embedding.

Example 3.1. Shown in Fig. 6a and b are a pattern and an
input tree, respectively. Note node 9 is labeled #. Define e,

320

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

a pattern q b

o7 ~ #] Cd”:induccd[c,ﬂ]
(? > O
a
+@) > b (D) — b0
N

c®

O

c@/bb

f d; = induced[e,, 7]

d pattern q e
©)

to[7 ~#]

Fig. 6. Trap embeddings and induced patterns.

as e1(0)=5, e1(1)=7, and e(2)=e4(3)=e,(4)=9, and define
ey as e3(0)=5, ex(1)=e,(2)=ex(3)=e,(4)=9. Both e; and e,
are trap embeddings. They are shown as the dotted
arrows on the left and right boxes in Fig. 6, respectively.
(Ignore the bold arrows for now.)

A node labeled # in t behaves like a trap, which absorbs
all the descendents of the node that is first trapped to it.
Thus, we call the node labeled # a trapping node, and the
parent of a trapping node a trap attach point (or simply an
attach point). We call the nodes that are mapped to a
trapping node trapped nodes. Trapping nodes and the
attach points are independent of embeddings, while the
trapped nodes may vary under different trap embeddings.
It is always the case that an input tree initially does not
contain any trapping node. If it is necessary to do a trap
embedding to it, we attach a trapping node to a pre-
determined attach point. We will use the notation t[n~#]
to denote input tree t in which a trapping node has been
attached to node n. For a convenient abuse of symbols,
when confusion is not possible, we will use # to denote
both the label for a trapping node and the trapping node
itself.

3.1.2. Induced patterns

If a node is trapped and its parent (either C_parent or
D_parent) is not, then the entire sub-tree rooted at that
node is a maximal sub-tree that has been trapped. For
example, for the embedding in Example 3.1, {2, 3, 4} is a
maximal sub-tree in q that is trapped to node 9 under e;.
In the general case, there may be multiple maximal sub-
trees trapped to a single trapping node under any
particular trap embedding.

Let g be a pattern and ¢t be an input tree. Let r be the
return node in g, and n be an attach point in t. Let e be a
trap embedding from q to t[n~#]. We now extract from q
a pattern, d, as follows. First, if e(r)## and e(r)#n, let
d=®, otherwise, create a root for d, and let label(root(-
d))=label(n). Then for each maximal sub-tree & trapped,
let root(o)=w. If w is a D_child of its parent in q, then let w
be a D_child of root(d), otherwise, let it be a C_child of
root(d), in d.2 If e(r)=#, then let r be the return node of d,
and if e(r)=n, let root(d) be the return node of d. We call
pattern d so constructed an induced pattern for e w.r.t. n,
and denote it by induced|e, n].

3 Recall that we allow a node to belong to multiple trees to avoid
using isomorphism symbols.

Example 3.2. Shown in Fig. 6¢c and f are two induced
patterns, where e; and e, are defined in Example 3.1. In c,
since sub-tree {2, 3, 4} is the maximal trapped sub-tree in
g under ey, it has been made also a sub-tree of node 10,
the root of induced[e;, 7] =do. Note that since 2 is a C_child
in g, we let it be a C_child also in dg. Similarly, in f, sub-
tree {1, 2, 3, 4} is the maximal trapped sub-tree in g under
eo, it becomes also a sub-tree of induced|e,, 7]=d;. Since
node 1 is a D_child in q, it is also a D_child in d;.

3.1.3. Trap embedding for query rewriting

Query rewriting is defined by the containment of two
sets of patterns, and containment in turns is defined based
on checking embeddings for all possible input trees.
Obviously it is not possible to follow the definition
directly and check all possible trees. Instead, we can
check a set of representative trees, which should together
replace the set of all possible trees. This is the set of
canonical models, which is defined based on the view v
and query ¢. In particular we make use of the following
Lemma 3.1, which is a theorem from [12]. We rewrite it
here for ease of reference.

Lemma 3.1. Let g, and q; be patterns, in which ry and r, are
return nodes, respectively. Let M be the set of canonical
models of q» for q1. Then q, contains q- iff for all te M, there is
an embedding e: nodes(q,)— nodes(t), such that e(r,)=mn.(15).

The following lemma will make use of the concept of
concatenation of trees. Let s and t be labeled trees, and
nenodes(t). Assume label(root(s))=Iabel(n), we use s®,t
to denote the tree formed by merging root(s) with n,
where all the children of n before the merging remain. We
call the new tree the concatenation of s and t at node n. This
concept is very similar to the concept of concatenation of
patterns, except that here we need to mention explicitly
the node in t that will be merged with root(s), while in the
case of concatenating patterns, cov always means the
root of ¢ is merged with the return node of v.

Lemma 3.2. Let q be a pattern, where r, is the return node.
Let t and s be trees, and benodes(t). Then it is true that:

1. If there is a trap embedding f: nodes(q)— nodes(t[b~#])
and an embedding g: nodes(d)— nodes(s) where d=in-
duced[f, b], then e: nodes(q)— nodes(s®pt), defined as:
e(n)=f(n) if f(n)##, and e(n)=g(n) otherwise, is an
embedding such that e(ry)=g(rq).

2. If there is an embedding e: nodes(q)— nodes(s®pt) such
that e(ry)enodes(s), then f: nodes(q)— nodes(t[b~#])

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334 321

Legend: - > trap emb. from q to ty[7~#]
--> emb. from ind. patt. to s
—> emb. fromqtos®; 1t

b (7)
s@t,
@ X 70
________ =7 b
c@ @
/'/'/7®C

Fig. 7. Diagrammatic explanation of Lemma 3.2.

defined as: f(n)=e(n) if e(n) e nodes(t), and f(n)=#
otherwise, is a trap embedding. Let d=induced([f, b] be its
induced pattern. Define g: nodes(d)— nodes(s) as:
g(root(d))=root(s) (=b), and g(n)=e(n) for n#root(d),
then g is an embedding, and g(rq)=e(r).

Idea of Proof. From the definition, a trap embedding
separates ¢ into two portions, an embedded portion and a
trapped portion. The embedded portion is targeted to ¢,
and the trapped portion is targeted to #. From the
definition, the induced pattern contains the trapped
portion as its first level sub-pattern. For condition 1, the
trap embedding is given. Also given is an embedding from
the induced pattern. We can create a normal embedding
from q to s@pt by retaining the embeddings from the
embedded portion and the first level sub-pattern of the
induced pattern. For condition 2, a normal embedding
from q to s@,t is given. We can separate it into an upper
and a lower part in such a way that the upper part is
embedded to t and the lower part is embedded to s. We
then create a trap embedding by retaining the embedding
from the upper part, and letting the lower part be trapped.
The given normal embedding from the lower part to s can
be copied to the induced pattern. The detail of the proof is
mainly based on the definitions. (Refer to Appendix A for a
formal proof.) O

Lemma 3.2 underlines a crucial theorem later in this
section. Its idea is further explained in the following
example.

Example 3.3. Shown in Fig. 7 is a pictorial explanation of
Lemma 3.2. On the left-hand side of the two-head arrow
are two embeddings. The dotted lines denote a trap
embedding from pattern g to tree to[7~#] (i.e., f in the
lemma). The broken lines denote an embedding from the
induced pattern to tree s (i.e., g in the lemma). The trap
embedding generates an embedded portion <0, 1), and a
trapped portion, which is the sub-pattern rooted at node 2.
On the right-hand side is a normal embedding from q to
s®7ty (i.e., e in the lemma). Suppose the embeddings on
the left are given. We can obtain the embedding on the

right by retaining the embedding from <0, 1), i.e., the top
two dotted lines, and the embedding from the first level
sub-pattern of the induced pattern, i.e., the bottom three
broken lines. Now suppose the embedding on the right is
given. We can obtain the embeddings on the left as follows.
We first separate q into an upper part, <0, 1), which is
embedded to to, and a lower part, the sub-pattern rooted at 2,
which is embedded to s. Then we create the trap
embedding on the left by retaining the embedding from
<0, 1), and letting the sub-pattern rooted at 2 be trapped.
The embedding from the induced pattern on the left is
formed by copying the bottom four lines on the right.

Until this point, we have required that the root of an
induced pattern be labeled the same as that for the attach
point, i.e., label(root(induced[e, n]))=label(n). This is
appropriate for the purpose of illustrating the concept,
i.e., the root of the induced pattern must match the attach
point. For a canonical model, however, we need to relax
this requirement. This is because, for a view pattern v, the
attach point in its canonical model for query pattern q is
labeled z if the return node of v is labeled *, where z is a
symbol that no node in q has been labeled. Our goal is not
just match the symbol. What we actually need is that if a
node in our pattern can match z, it can match any symbol.
This is also the original motivation for introducing symbol
z in [12]. Thus, from now on, if the attach point in the
canonical model is labeled symbol z, we will label the root
of the induced pattern asterisk.

Theorem 3.3. Let q and v be patterns, and rq and r, be the
return nodes in q and v, respectively. Let M be the canonical
model set of v for q. Let ¢ be any pattern. Then c®v
is a rewriting for q using v, if and only if, for all t € M,
{c}= &P, where P.={inducedfe, m1,)]le: nodes(q)—
nodes(t[my(r,)~#]) is a trap embedding}.

Proof. only if: We must prove P;2 &{c} for all teM, given
that = & cov. Let rc be the return node in ¢, s be any tree
and e: nodes(c)— nodes(s) be any embedding. Recall 7;:
nodes(v)— nodes(t) is an embedding that maps each node
in v to its copy in t. Thus, eum: nodes(cov)—
nodes(s®x,) t) is an embedding. So there is an embedding

322 J. Tang, A W. Fu / Information Systems 35 (2010) 315-334
a patternq | patternv C t[12~4] dindu. patt. || € t2[22~#] f indu. pats.
©)
I “od| 0 O @ =7
+D b *
b (1) z (19
S . \ b @®
ED e # ¢ @{ b b b \ NG
c® O @ @ S O

Fig. 8. Induced patterns and concatenated patterns.

y: nodes(q)— nodes(s@®x,)t) such that y(rg)=e(r;) e
nodes(s). By part 2 of Lemma 3.2, there is a trap
embedding f: nodes(q)— nodes(t[n(r,)~#]) and an em-
bedding g: nodes(d)— nodes(s), where d=induced|f,
my(ry)]. Furthermore, y(ry)=g(rq), where rq is the return
node in d. This implies e(r.)=g(ry). Note deP; By
Definition 2.2, P2 &{c}.

if We need to prove that = 4 c®v, given {P;} 2 4&{c} for
all teM. Let O be the canonical model set of c for g and N
be the canonical model set of cev for q. Let heN be an
arbitrary canonical model. Then it must be the case that
h=5®z,,t, for some se0 and teM. Since {P;}= 4{c},
there is a trap embedding f: nodes(q)— nodes(t[7,(r,)~#])
and a g: nodes(d)— nodes(s) such that g(ry)=m(r.), where
d=induced[f, n/(r,)]. By part 1 of Lemma 3.2, there is an
embedding e: nodes(q)— nodes(h), such that
e(rq)=8(rq)=ny(r;). Recall that r. is also the return node
in cedv and, clearly, mu(rc)=n(rc). Thus e(rg)=mu(re). By
Lemma 3.1, g2 s.cov. O

Theorem 3.3 is crucial for the following discussions. It
tells us that, for the given patterns q and v, if we can find a
set of patterns that is contained by every set of the
induced patterns for the canonical models of v, then that
set of patterns is necessarily a set of compensation
patterns. On the other hand, any compensation pattern
must be contained by every set of the induced patterns.
(Note that ‘any’ here necessarily includes maximal
compensation pattern.) Thus, Theorem 3.3 has the full
power for the existence of (maximal) rewriting. However,
a direct implementation of the theorem for the purpose of
searching for rewriting may not be realistic, since there
are (L+2)™ ii-extensions of the view, and for each of them
we need to test the containment. Nonetheless, the
theorem provides a theoretic basis on which other
schemes can be built. In the subsequent sections, we will
introduce two such schemes, with varying degrees of
powers and efficiencies. We first introduce a corollary that
imposes a stronger condition than Theorem 3.3 to avoid
checking for containment.

Corollary. Let ¢, q and v be patterns, and r, be the return
node in v. Let M be the canonical model set of v for q. If for all
teM, there is a trap embedding e, nodes(q)—

nodes(t[wy(r,)~#]), such that c=induced[e,my(r,)], then

c®dy, v is a rewriting for q using v.

Proof. The condition implies, for all t, ceP,. This in turn
implies {c}< &P. O

The corollary states that if a pattern is a member of
every set of the induced patterns, then it is a compensa-
tion pattern. Since checking the membership for patterns
is easier than checking pattern containment, the corollary
provides a simple way to search for compensation
patterns in a restricted context.

Example 3.4. Shown in Fig. 8a and b are patterns q and v,
respectively. There are three ii-extensions in the canonical
model set of v, to, t1, and t,, where ¢, is depicted in Fig. 6b,
and t; and t; are in Fig. 8c and e. (Note that the diagrams
are the ii-extensions plus an extra # node.) All these three
ti-extensions have the induced patterns, dy and d; shown
in Fig. 6¢c and f, respectively. Furthermore, t; and t, both
have an additional induced pattern, as shown in Fig. 8d and
f. By the above corollary, {do®v, d1®v} is a rewriting for q
using v, which are, respectively, shown in Fig. 8g and h.

3.1.4. Algorithms

In this subsection, we introduce a method that searches
for rewritings. The method is based directly on Theorem
3.3. We first introduce two functions, GenEmb(C(-) and
GenEmbD(-). The former generates trap embeddings from
a pattern to a tree, and the latter generates those from a
pattern to the tree as well as all its descendant sub-trees.
This is necessary due to different requirements on C_edges
and D_edges in the definition. The main data structure is a
two-dimensional array E, with each entry corresponding to
a pair of pattern and tree nodes. For a pattern node x and
tree node y, E[x, y] is initially undef, and will contain a set of
trap embeddings from sub-pattern x to sub-tree y or
its descendant. We also use two one-dimensional arrays
B[x] and D[x] as working variables. For pattern node x, B[x]
contains a set of trap embeddings from sub-pattern x. D[x]
is a set of sequences of trap embeddings. Each such
sequence contains exactly one trap embedding from each
child of x. We assume the following initializations:

E[x, y]=undef for all pattern node x and tree node y.
B[x]=® for all pattern node x.
D[x]={e} for all pattern node x.

J. Tang, A.W. Fu / Information Systems 35 (2010) 315-334 323

GenEmbC(PatternNode X, TreeNode y, Embeddings
E[x, y])

1. if (label(x)#* and label(x)#label(y) and label(y)=#)
then

E[x, y] < ®; return
. if label(y)=# then

define a new embedding e as: e(x)=y, and e(z)=y
for all the descendents z of x, insert e into E[x, y], and
return

ENERRN

5. for each child x’ of x
6. for each child y’ of y
7. if E[x/, y']=undef
8. if X’ is a C_child then GenEmbC(x',y’, E[X/, y'])
9. else GenEmbD(X/, y', E[X, y'])
10. insert all members of E[x/, y'] into B[x]
11. D[x]«D[x] xB[x] /| the result will be ® if an

operand is @

12. if D[x]=® then E[X, y] < ®, and return

13. for each eq,...,e;> eD[x] //1,...,n are the ids of the
children of x

14. define a new embedding e, as: eyx(x)=y, and
ex(z)=ei(z) if z is in sub-pattern rooted at i

15. insert ey into E[X, y]

16. return

GenEmbD(PatternNode X, TreeNode y, Embeddings E[X,
yD

. if (label(x)=* and label(x)=1abel(y) and label(y)=#)
. then go to 16
. if label(y)=# then

define a new embedding e as: e(x)=y, and e(z)=y
for all the descendents z of x, insert e into E[x, y], and
return

A WN =

5. for each child x’ of x
6. for each child y’ of y
7. if E[X/, y']=undef
8. if X’ is a C_child then GenEmbC(x",y’, E[X/, y'])
9. else GenEmbD(X/, v/, E[X, V'])
10. insert all members of E[x/, y'] into B[x]
11. D <D x B[x’]//the result will be ® if an operand is

(0]

12. if D=® then go to 16

13. for each ey,...,e,> €D

14. define a new embedding e, as: ex(x)=y, and
ex(z)=ej(z) if z is in sub-pattern rooted at i

15. insert e into E[x, y]

16. for each child y’ of y

17. if E[X, y']=undef then GenEmbD(x, V', E[X, ¥'])
18. insert a copy of E[x, y'] into E[X, y]

19. return

Upon return, GenEmbC(x, y, E[x, y]) stores into E[x, y] all
the trap embeddings from sub-pattern x to sub-tree y, and
GenEmbD(x, y, E[x, y]) stores in the entry all the trap
embeddings from sub-pattern x to sub-tree y or its
descendant sub-trees. Line 11 assembles the sequences
of the trap embeddings from the children of x. When the
control reaches line 12, D[x] contains all possible

sequences of trap embeddings from one child of x each.
If the test in line 12 evaluates to true, at least one child of
x cannot be embedded, and therefore no trap embedding
exists from x to y. When the control reaches line 18 in
GenEmbD(-), E[x, y'] is defined (possibly @). Note that an
insertion into an undefined array entry always overwrites
undef. Also note that a recursive call is made only when
the corresponding array entry is undefined, indicating no
earlier calls have been made to the corresponding pattern
and tree nodes. Thus, all the calls are made on different
pairs. Let x=root(q) and y=root(t). The total number is
|q| - |t]. Assuming k < |q|, where k is the total number of
trap embeddings from q to t, the time it takes to execute
GenEmbC(-) is O(|q]| - [t]).

After the trap embeddings are generated, we must
create the induced pattern for each of them. This is done
by the following algorithm.

Induced(Pattern q, Input t, TrapEmbedding e)

{Let rq be the return node in g, and s be the attach
point in t, where a trapping node has been attached.}

1. if (e(rq)#s and e(rq)##) then return ®

2. get a node r and let label(r)=1abel(s)

3. for each n in pre-order traversal of q

4, if e(n)=# then

5 if n is a C_child of its parent then

6. let n be a C_child of r

7 else let n be a D_child of r

8 skip all the descendants of n from traversal
9. return pattern rooted at r

The algorithm is just a rephrase of the definition for an
induced pattern. (Refer to Section 3.1.2.) Since we traverse
q only once, the complexity is O(|q]|).

Based on the previous functions, the following top
level function retrieves all the rewritings for q using v. The
following notations are used. M is the set of canonical
models of v for g, root, and root, denote the roots of q and
t, respectively, and r is the return node in v. For each
canonical model t of v, we assume # has been attached to
7(r). Variable P, has been initialized to @& for all t.

GenRewriting

. for each teM
GenEmb((rootg, root;, E{root,, root])
for each eeE[rootg, root]
P, PUlnduced(q, t, e)
- CNeemPe
. for each ceC
insert c®,v into R
return R

PNOU AWM=

The correctness of the above algorithm is easy to see. P,
contains all the induced patterns for each canonical model
teM, and C contains all the induced patterns common to
all P, teM. By the corollary of Theorem 3.3, R is a
rewriting for q using v.

For the time complexity, we consider the loop only,
since it dominates asymptotically. First note that
[M|=(L+2)™, where m is the number of D_edges in v and

324 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

L is the length of the longest star-path in g. This is the
number of calls for GenEmbC(-) in line 2. Each call to
GenEmb((-) takes a time of O(|q| - [t]). For each such call,
line 4 is executed k times, where k is the number of trap
embeddings generated by the call. Each execution of line 4
takes a time of O(|q|). Thus, the total time complexity is
O((L+2)™-(Iql - |t| +kIgl)). Assuming k <|q|, the total time is
O((L+2)"-1q| - It]).

3.2. Trap relay

3.2.1. F_segment and prefix-suffix matching

A trap embedding is a mapping from a pattern to a tree
that allows us to extract a compensation pattern. The
exponential overhead results from the need to consider all
the canonical models of the view. Does there exist a
mapping directly between two patterns that allows
extracting compensation patterns? We consider this issue
in this subsection. We first discuss the issue for patterns
that are paths. We then extend the results to the general
case. The following notations and conventions will be
used. Greek letters denote paths, and English letters
denote nodes. (An exception is g and v, which we will
still use for patterns, in order to be consistent with the
previous sections.) Let /4 and p be path patterns. We use
the notation &(4)=p to denote mapping &: nodes(1)—
nodes(u) such that g(start(1))=start(x) and e(end(-
A))=end(u). We define an operator precede join, denoted
by @, as follows. If end(A)=start(u), then 1 ¢ u=7y where y
is a concatenation of A and p, but contains only one
occurrence of end(/) or start(u), otherwise it is undefined.
We use the expression of the form (condition A) except
(condition B) to mean that condition A is true with some
exception specified by condition B.

Any path pattern is a sequence of C_edges and
D_edges. If the two end points of a D_edge are both
labeled *, then it can be matched to any tree path. It turns
out that a similar property also holds for certain kinds of
paths. This implies that there is a need to distinguish
different kinds of paths.

Definition 3.2. Let 4 be a path pattern. It is called a
C_segment if it does not contain D_edges, and it is called
an F_segment if Vnenodes(l): [(n#(start(d) &
n#end(A)= label(n)=*], and 3n;, n, e nodes(l): [<{ny,
ny) is a D_edge].

An F_segement has an interesting property. Before we
describe it, we first introduce a concept.

Definition 3.3. Let A=<ay,...,a > be a path pattern, and
t={bs,...,by,> be a tree path. Let e be an embedding from A4
to t. We say e is a prefix—suffix matching with separating
edge {aj, j+1), where 1<i<m, if vk,
[(1<k<i=e(ax)=by) and (i+1<k<m= e(ay)=bn_m+k)]

A prefix-suffix matching must first of all be an
embedding. It maps the nodes preceding the separating
edge to the prefix and those following the separating edge
to the suffix, from the path pattern to the tree path. Note a
prefix—suffix matching may not always exist. For example,
it cannot possibly exist if |A| > |t|. If || < |t] and {a;, j+1)

a p-s match. b notp-smatch. C not p-s match.
a 0 D> @ a a @ > @ a
><>c ...>c
*\d >L...>d
: \ e ONRGL
b@), @®f @3 ¢
@ b D_edge required @ b

Fig. 9. The idea of prefix—suffix match.

is a C_edge, then no prefix-suffix embedding exists with
{aj, aj+1) as the separating edge.

Theorem 3.4. Let A=<ay,...,an» be an F_segment, and {a;
ai+1y be a D_edge, where 1<i<m. Let t={by,...,.b,)> be a
tree path. If label(a,)#*= label(a,)=label(b,), labe-
I(a,,)# *= label(a,,)=label(b,), and m<n, then there is a
prefix-suffix matching with separating edge < a;, a;+;)» from
Atot

Proof. Define e: nodes(1)— nodes(t) as: for all 1<k<i,
e(ap)=by, and for all i+1<k<m, e(ax)=by_m+r. We now
show e is an embedding. Since e(a;)=b, e(a,=b,) and vk,
[1 <k <m=>label(ak)="], the root and node conditions are
satisfied. Let (nq, ny> e edges(A). If ny=qy for some 1<k <1,
or i+1<k<m, then e({ny, ny>)=<by, br+1) € edges(t), or
e({ny, n3>)=<{bpn_m+io bn_m+r+1> € edges(t). If ny=a; then
e({ny, ny>=<b; by_m+i+1y. Since n—m+i+1>i+1, <b,
bn_m+i+1» is a path in t. Thus, e is an embedding. By
definition, it is s prefix-suffix embedding. O

Theorem 3.4 states that, for any F-segment, as long as it
is not longer than a tree path, and its start and end nodes
can be embedded, then any D-edge in it is a separating
edge for a prefix-suffix matching.

Example 3.5. Consider Fig. 9. The left most diagram
shows a prefix-suffix matching with separating edge
{1,2>. It is clear that the nodes preceding and following
that edge are mapped to the prefix and suffix of the tree
path, respectively. In addition, the mapping is an
embedding. In Fig. 9.b, no prefix-suffix matching exists,
since the path pattern is longer than the tree path. (In this
case, there does not even exist an embedding.) In Fig. 9c,
the mapping is not prefix-suffix matching since the
separating edge is not a D_edge. Thus, when we map
the nodes preceding and following <2, 3> to the prefix
and suffix of the tree path, respectively, we do not have an
embedding.

Corollary. Let . be an F_segment, pu be a path pattern,
and t be a tree path. Assume label(start(A))+#*=
label(start(A))=label(start(p)), and label(end(1))#"*=
label(end(7.))=label(end(w)). If there is a mapping e;(2)=p,
such that vn,, n, enodes(l), [n<ny=e(ny)<e(n)],*

4 The symbol ‘<’ indicates precedence relation between nodes in a
path pattern.

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

a>a > a

bA>E)L > (9P
I

F_segment: can p-s *}L z
match <15,...20> *Gas)d = e
f@ (@he . S ®g

g\i\\f RO
SONGIR:Y

S @

Agi iy e t

325

CO>Dr > @

bO>@)° > P

Not F_segment: c el > - OE
et 2o
f@ @ e A @®)g
(D D ®e

h ; PN é@f

Ty en#

Mgyl e t

Fig. 10. The idea of a trap relay.

and an embedding e,(w)=t. Then there is a prefix—suffix
matching from A to t.

Proof. For our convention mentioned earlier in this
subsection, e;(start(4))=start(u) and e;(end(1))=end(u).
Since e; preserves the order of the nodes in /, |4|<|ul.
Since e, is an embedding, surely we have |u|<|t|. Thus
|[Al<|t|. In addition, label(start(u))#*= label(-
start(u))=label(start(t)), and label(end(u))#*= labe-
I(end(u))=1label(end(t)). Combining this with the
assumption in the corollary, we have label(start(1))#* =
label(start(/))=label(start(t)), and label(end(1))#*= la-
bel(end(1))=label(end(t)). By Theorem 3.4, the claim
follows. O

Note that the mapping e; in the above corollary is
required to preserve the node order, but is not required to
preserve the structural information of 4. On the other
hand, e, is required to be an embedding.

Example 3.6. Consider Fig. 10. There is an F_segment
(1,...,4> in path pattern 4. (Ignore the other segments
for now.) In the figure, g; is a mapping, g,(<{1,...,.4)>)=
{8,...,12>, which preserves the node order. Also, e is an
embedding e(<¢8,...,12>)=<15,...,20>. This meets the
conditions in the above corollary. It is easy to see
that there is a prefix-suffix matching from <1,...,4> to
(15,...,20), i.e,, nodes 1 and 2 are matched to 15 and 16,
respectively, and nodes 3 and 4 are matched to 19 and 20,
respectively. Note that g; does not preserve the
edge structures. For example, both <1, 2> and <3, 4)
are C_edges, but <g{(1), g/(2)> is a D_edge, and
{g1(3),....g1(4)> is a path, and this does not affect the
existence of the prefix-suffix matching mentioned above.
On the other hand, <1,...,4> in A, is not an F_segment.
Thus, although g, also preserves the node order, there is
no prefix-suffix matching from <1,...,4> to <15,...,20>
in this case. However, (2,...,4)> is an F_segment in 1,
and there is a prefix-suffix matching from <2,...,4> to
<17,...,20), i.e., 2 matches 17, and 3 and 4 match 19 and
20, respectively.

Since a prefix-suffix mapping is also an embedding, and
t is an arbitrary tree path, the above corollary implies A
contains u. (View end(4) and end(u) as return nodes.)

A crucial point here is, this containment is ensured without
requiring the structural information of 1 to be preserved in pi.
This property of an F_segment plays a pivotal role in the
method for rewriting to be introduced in the next section.

3.2.2. Definition of trap relay

Our intention is to have a kind of mapping defined
directly between a query and view that allows us to
extract compensation patterns, and at the same time
imposes as weak a requirement as possible. As such, a
mechanism like homomorphism is not appropriate, since
it has a strong requirement that the edge structures of the
query be preserved. On the other hand, with the concept
of F_segment, we can attain our goal by incorporating it
into such a mapping.

Definition 3.4. Let A be a path pattern where |1|>2, and
be a path pattern, such that vn e nodes(4) U nodes
(u): [n#end(w))= label(n)=#]. Then &(1) is a trap relay,
if eA)=u, and vn e nodes(4): [label(n)=* or
label(n)=1abel(&(n)) or label(e(n))=#], and

1. start(u)=end(u)=#, or

2. start(u)=##, A and p are C_segments, |Z|=|u|, and vny,
ny € nodes(A): [{ny, ny) is an edge {&(ny), &(ny)) is an
edge], or

3. start(u))##, X is an F_segment, and Vn;, n, € nodes(4):
[n1<ny = &(n1)<&(ny)], or

4.).=a1/11az)n2(13 and /,l=b1/,t]b2,u2b3 where /11, /12, U1, and
Uy are path patterns, and a; and b; are nodes, such that
8((11/11(12)=b1,u,1b2, £(a2),2a3)=b2,u2b3, and both 8((1121(12)
and &(axAas) are trap relays

Call base cases 1, 2, and 3 trap matching, C_segment
matching and F_segment matching, respectively.

For trap matching, ¢ is degenerated to a single node,
which is labeled #. For C_segment matching, each C_edge
in A is mapped to a C_edge in u. For F_segment matching,
we only require the mapping to preserve the order of the
source nodes. Case 4 is a recursive statement, which
essentially states that A is composed of sub-paths that fall
into the three base cases. We exclude the case where
|2]=1 from the definition only for purpose of simplifying

326 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

presentation. (A query pattern containing only a singleton
root is uninteresting, while including this into our model
requires a separate, but non-sophisticated, treatment.)

Note that since any path pattern in XP! /- ['l "1 js a
sequence of C_edges and D_edges, which are just special
cases of C_segments and D_segments, respectively, for
any pair of path patterns /4, ueXP!- /- 11 "I (where only the
last node in u can possibly be labeled #), and mapping
&(4)=p, ¢ is either a relay or is not a relay. Thus, Definition
3.4 is applicable for path patterns in the entire class XP!- /"
(-1 "1 This definition will be extended to the tree patterns
in Definition 3.5.

Example 3.7. In Fig. 10, g, is a trap relay from Z, to p;. To
see why, we decompose 4, into <0, 1), <1,...,4>, <4,5)>
and <5,6)>. We have g1(<0,1>)=<7,8),81(<(1,...,4>)=<
8,...,12>, g1(<4, 5>)=<12, 13>, and g;(<5, 6>)=<13>.
These four sub-mappings meet respectively conditions 2,
3, 2 and 1 in Definition 3.4. On the other hand, g, is not a
trap relay, since we cannot decompose A, in the way
specified by Condition 4. Note that decomposing /, in the
same way as decomposing A; does not work, since <{
1,...,4> is not an F_segment any more here. On the other
hand, decomposing it into <0,...,2>, <2,...,.4>, (4, 5),
and <5, 6) does not work either. Although <2,...,4> is an
F_segment in A, <1, 2> now is part of a C_segment, and
therefore should meet condition 2, which it does not.

3.2.3. A characterization of trap relay

Abstractly, trap relay is similar to the matching
proposed in [2], but in an opposite direction. The
matching there is designed to test the existence of a
complete rewriting using view. Thus, it requires each
component in the view to contain its target in the query.
This is necessary since otherwise we would not be able to
retrieve a complete answer from the view. In our context,
we require each edge pattern, i.e., C_segment or F_seg-
ment in the query to contain its target in the view. This
will make it possible to extract compensation pattern
from using trap relay. The main differences are as follows:
(1) The matching introduced in [2] does not contain a
mechanism that can generate a pattern directly for
rewriting purpose. An entirely separate algorithm must
be developed to deduce such a pattern. On the other hand,
trap relay can automatically generate a compensation
pattern directly for rewriting purpose, thanks to
its trapping capability. (Refer to the discussion below.)
(2) The matching in [2] is based on homomorphism,
which requires the edge structures in the view to be
matched by the query. In trap relay, an F_segement
requires only the relative orders of its nodes to be
preserved in the target, which is a strictly weaker
requirement than homomorphism.

We will show how we extract compensation patterns
from a trap relay. We use the same notations as those for
the trap embeddings, such as trapping node, trapped
node, attach point, etc. Also, the notion of induced pattern
is defined similarly as that for trap embedding. The main
result we will establish is: any induced pattern from a trap
relay is a compensation pattern.

In the following, we assume any path initially does not
contain a trapping node. For path u (i.e. either path
pattern or tree path), we use u[b~#] to denote that a
trapping node has been attached to the last node b in p.
For example, in Fig. 10, 13 is a trapping node, and 12 is the
attach point for p;. Nodes 5 and 6 are trapped nodes,
n1=<17,...,12> and pq[12~#]=<7,...,13>. The induced
pattern for g; is the path pattern {4, 5, 6).

Lemma 3.5. Let / and p be two path patterns. Assume
&(A)=p[b~#], and (1) is a trap relay. Let t be a tree path,
and e(u[b~#])=t[c~#] be an embedding.> Then (1) there
is a trap embedding f(1)=t[c~#], and (2) let d;=induced|e,
b] and dy=induced|f, c]. Then (d,=d») except (label
(root(d,))+*= label(root(d,))=label(root(d;))).

The above lemma states that for any tree path t[c~#] to
which p[b~#] has an embedding, 4 also has an embed-
ding to it whose induced pattern is identical to that
induced by the trap relay. This lemma establishes a basis
for the correctness of trap relay, i.e., the induced pattern
from a trap relay is indeed a compensation pattern.

Idea of Proof. If ¢(1) is either a C_segment matching, or a
trap matching, then let f=¢%. If &(1) is an F_segment
matching, then let f be the prefix-suffix matching. If ¢(1) is
a sequence of the above three kinds of matching, then let f
be the union of the trap embedding formed for each
individual kind of matching as outlined above. (Note a
trap matching can occur only at the end of this sequence.)
(A formal proof is found in Appendix B.) O

Example 3.8. We have seen from Example 3.7 that g; is a
trap relay from 244 to p;. It consists of two C_segment
matching: g,(<0,1>)=<7,8> and g;(<{4,5)>)=<12,13),
one F_segment matching: g:(<1,...,4>)=<8,...,12>, and
one trap matching: g:(<5,6»)=<13). Observe e is an
embedding from p; to t. We can then construct a trap
embedding f:(/q)=t as follows. For nodes 0, 1, 4, 5, 6, let
f=gqce. For nodes 1, 2, 3, 4, let f be the prefix-suffix
matching from (1,...,4)» to (15,...,20)» with separating
edge <(2,3), i.e, f{1)=15, f{2)=16, f(3)=19, and f(4)=20.
Clearly, f so defined is a trap embedding from A; to t.
Furthermore, the induced pattern for g; and that for f are
identical, i.e., both are the path pattern <4, 5, 6>. Now,
consider g;. We have shown that it is not a trap relay.
Note u, is identical to p;. Thus e is also an embedding
from u, to t. But we cannot claim that there is a trap
embedding from /, to t. (In fact, none exists.)

We will establish our central result, i.e., the induced
pattern for a trap relay is a compensation pattern, in a
more general setting to be introduced below.

A trap relay is defined over paths. To apply the concept
to a general tree pattern, we can view a pattern as a
collection of blocks. A block is a path delimited by two fork
nodes, or a fork node and a leaf node. Thus, any node in a
block does not branch, except for possibly its start and the

5 By our convention, this is a normal embedding. Thus, it should
treat # as a normal label, rather than a trapping label.

J. Tang, AW. Fu / Information Systems 35 (2010) 315-334 327

a pattern q b pattern v C indu. patt. d indu. patt.
© © b(@ <
~ I
| ®a
D b @) @
(@ e® E)# NolRo RO
.S o JofoL

Fig. 11. Induced patterns for trap relays.

end nodes. For any given tree pattern, the collection of the
blocks is uniquely determined.

Definition 3.5. Let g and v be patterns, r be the return
node in v, and S be the set of the blocks in q. Let g:
nodes(q)— nodes(v[r~#]) be a mapping such that
g(root(q))=root(v[r~#]). Then g is a trap relay from q to
v[r~#] if for all s € S, g(s) is a trap relay.

Let g: nodes(q)— nodes(v[r~#]) be a trap relay. Its
induced pattern, denoted as induced|g, r] is formed in
exactly the same way in which an induced pattern for a
trap embedding is formed. (Refer to Section 3.1.2.) For the
induced pattern for the trap relay on full tree patterns, we
have similar results to Lemma 3.5.

Lemma 3.6. Let q and v be patterns, where v# ®. Let r; be
the return node in v. Assume g: nodes(q)— nodes(v[r;~#]) is
a trap relay. Let t be a tree and e: nodes(V[r;~#])—
nodes(t[ro~#]) be an embedding. Then there is a trap
embedding f: nodes(q)— nodes(t[ro~#]) such that (1) for
each block /. in q, f(1)=e(g(/.)), and (2) let induced[g, r;]=d;,
and induced(f, ra]=d>, then (d;=d3) except
(label(root(d;))# *= label(root(d;))=label(root(d>))).

Idea of Proof. By Lemma 3.5, for each block 4 in g, there
exists a trap embedding f;(4)=e(g(1)). Let f be the union of
the embeddings for all the individual blocks. We can show
fis a trap embedding from q to t[ro~#]. Condition 1 is
trivial. For condition 2, we show that a path « belongs to
induced|g, r1] if and only if a path § belongs to induced|f,
r,] such that (a=p) except (label(root(o))+*=>
label(root(x))=1abel(root(f3))). (For a formal proof, see
Appendix B.) O

Based on Lemma 3.6, we have our main result in the
following theorem.

Theorem 3.7. Let q and v be patterns, and r be the return
node in v. Assume g: nodes(q)— nodes(v[r~#]) is a trap
relay, and c=induced|g, r]. Then ¢ & v is a rewriting for q
using v.

Proof. Let M be the canonical model set of v for q, and
teM be an arbitrary ii-extension. Since .
nodes(v[r~#])— nodes(t[n(r)~#]) is an embedding, by
Lemma 3.6, there is a trap embedding f: nodes(q)—
nodes(t[w{r)~#]). Let induced[f, m{r)]=d. Then (c=d)
except (label(root(c))#*= label(root(c))=1abel(root(d))).
Note that label(root(c))=* implies label(r)=* implying
label(w(r))=z. This means label(root(d))=*. (Refer to the

illustration preceding Theorem 3.3.) Thus c=d. Since deP,,
and t is any canonical model, ce N temP:. By the corollary
of Theorem 3.3, the claim follows. O

Example 3.9. Consider pattern q in Fig. 11a. There are
three blocks in g: <0,1,2), ¢(2,3>,and <2,4).Fig. 11bis
a view pattern, with a # node attached to 7. We define
e(0)=5, e(1)=7, and e(2)=e(3)=e(4)=#. We have e(<0, 1,
2>) is an F_segment matching, and e(<2, 3)) and e(<{2,
4%) are trap matching. (Refer to Definition 3.4.) Thus,
e is a trap relay from q to v[7~#]. Its induced pattern
is do, depicted in Fig. 11.c. Similarly, there is another
trap relay e from ¢q to v[7~#]: €(0)=5 and
e'(1)=e'(2)=€'(3)=¢'(4)=#, with induced pattern d; in
Fig. 11d. We have already seen that both do®-v and
d@7v are rewritings for q using v. (Refer to Example 3.4.)

3.2.4. Searching for trap relays

Theorem 3.7 in the previous section implies that, if we
can find a trap relay, then its induced pattern is
necessarily a compensation pattern, and therefore we
can concatenate it with the view to form a rewriting. The
question now is, how we can find a trap relay in the first
place. The following theorem provides a simple approach.

Theorem 3.8. Let q and v be query patterns, and t be any ii-
extension of v for q. Let r be the return node in v. If g:
nodes(q)— nodes(v[r~#]) is a trap relay, then there is a trap
embedding f: nodes(q)— nodes(t[nr)~#]) such that for all
block A in q, f(A)=mn(g(})).5

Proof. Recall &, is a trivial embedding that maps each
node in v to its copy in t. The claim follows directly from
condition 1 in Lemma 3.6 by setting e there to 7. O

The above theorem suggests that, to search for all the
trap relays from q to v[r~#], we can first find the set of all
the trap embeddings from g to any given ii-extension of
v[r~#]. We therefore use the simplest one, the O0-
extension. For each such trap embedding f, we keep track
of f{2) for each block A in q. Then we identify 75 '(f{A)),
which is simply a copy of f(4) in v[r~#]. We can
then check if this mapping meets the conditions in
Definition 3.3.

Since any pattern and its O-extension are identical in
shape, in the physical implementation, we can conveni-
ently use a single tree for both the view and its

6 7, here should be understood as also mapping the # node in
v[r~#] to the # node in t[n(r)~#].

328 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

O-extension. Initially, the tree plays the role of the
0-extension, to which we search for trap embeddings
from q. This task is fuled by using function GenEmb((-) in
Section 3.1.4. Then for each embedding found, we test if it
is a trap relay from q to the view. It is a trap relay if and
only if for all the blocks of g, it is a trap relay. For each trap
relay, we generate its induced pattern, which is then
concatenated with the view to form a rewriting. The
following is the pseudo-code for the function described
above.
UseRelay(Query q, View v)

1. GenEmb((rootg, root,, E)

2. foreach e € E

3. if for all block o of q, IsRelay(x, e)=true
4. then insert e to R

5. for each eeR

6. insert Induced(q, to, €) to |

7. for each cel

8. insert c®v into W

9. return (W)

In the above function, IsRelay(o, e) is true if and only if e
is a trap relay when it is restricted to o. Its pseudo-code is
shown below.

IsRelay(Block o, TrapEmb e)

. {nq, np) < next edge from o

. if ¢{ny, ny» =NULL then return yes

. if e(ny)=# then return yes

. find the longest segment A starting from n; in which

all the inner nodes are labeled *

5. if Inenodes(A): [e(n)=#] then n« first node in A such
that e(n)=#

6. else n—end(\)

7. if (nq,..., n)> is a C_segment & 3I<ay, a) eedges(<
ny,....n»): [<e(<ay, az) is a D_edge] then return no

8. else (ny, ny)» « the edge following n; go to 2

AW N =

We scan block o« and check if it can be decomposed in a
way specified in condition 4 of Definition 3.3. In line 3, if
the test evaluates to true, then all the following nodes will
be mapped to # by e. Thus condition 1 is true, and e(«) is a
trap relay. If the test in line 7 evaluates to true,
e({ny,...,n)») contradicts all three conditions 1, 2, and 3
in Definition 3.3. When control reaches line 8, {(ny,...,n>
is either an F_segment, or a C_segment in which no edge
is matched to a D_edge. The former corresponds to
condition 3, and the latter corresponds to condition 2.
Thus we continue the process for the suffix of « following
{(Nnq,...,N>.

For the time complexity of UseRelay(*), with
O(|q| - |E| - |v]), we can obtain the set E of all the trap
embeddings from q to the 0-extension of v. With O(|q|),
we can retrieve the set of all the blocks in q. By storing
necessary information while scanning, lines 4-7 can be
implemented with a single scanning. Thus the amount of
time for each call to IsRelay(.) is O(|o| - |e(o)]). This means
determining whether or not e is a relay for pattern q takes
O(lq| - |v]), and hence checking all the trap embeddings for

relays takes a total of O(|q|-|v|-|E|). Thus, the total time
complexity for finding all trap relays from q to v[r~#] is
O(lgh+0(lq| - [v)+O(lql - |v| - [E[)=OC(lg] - [v| - |E]). ~ Clearly,
this performance is superior to that for GenRewriting(*),
since its complexity depends mainly on |E|, the number of
trap embeddings from q to a single canonical model (i.e.,
the O-extension) of v, while the complexity of GenRe-
writing(*) depends not only on the number of canonical
models of v, but also on the number of trap embeddings
from g to all these canonical models. As mentioned in
Section 2.2, the number of canonical models of v is an
exponential in the number of D-edges in v, which in the
worse case can be |v|-1 (i.e., all the edges in v are
D-edges). The price paid for that performance for
UseRelay(*), however, is the stronger condition used by
trap relay than that in the corollary of Theorem 3.3. This
point follows directly from Theorem 3.8. For any ii-
extension t of v, for each trap relay g from g to v, there is a
trap embedding f from q to t whose target nodes are
copies of the target nodes of the trap relay. This implies
the induced pattern of g is also the induced pattern of f.
Since t is an arbitrary ti-extension of v, the condition in
the corollary of Theorem 3.3 is true. However, the reverse
is not always true, i.e., an induced pattern shared by all
the ti-extensions of v is not necessarily an induced pattern
of any trap relay from q to v. (It is worth noting here that,
although it is more efficient than the GenRewriting(*), the
algorithm UseRelay(*) is an exponential algorithm in
nature. This is because, in the general case, |E| is
exponential.)

3.3. Maximality

The methods we have discussed so far consider how to
generate rewritings. In the general case these are not
necessarily maximal. However, under some conditions,
the maximality holds. In this section, we introduce these
conditions. We use the phrase ‘selection path’ to refer to
the path that starts from the root and ends at a return
node in any pattern. Note that, for any pattern, there is a
unique selection path.

Theorem 3.9. Let M be the set of canonical models of v for q,
and r be the return node in v. If there is a toeM, such that
there is a unique trap embedding e: nodes(q)—
nodes(to[m(r)~#]), then any non-empty rewriting generated
by the corollary of Theorem 3.3 is maximal.

Proof. The ‘if clause implies |P;| =1 where P, is defined
in Theorem 3.3. Let Py =({co}. Let cdv be a rewriting
generated by the corollary, i.e., for all teM, ceP,. Since
¢ € Py, c=co. Now, let c'®v be any rewriting. By Theorem
3.3, for all teM, {c}<= &P, Thus, {c'}< &{co}. This means
Co®V is maximal. O

The condition in Theorem 3.9 does not constrain the
structures of the patterns, and hence has some degree of
flexibility. However, if the corollary returns an empty set,
this does not necessarily mean there does not exist a
rewriting. The following theorem is motivated by the
observation that the asterisk symbols and descendant
edges are the two most flexible structures for a pattern. If

J. Tang, A.W. Fu / Information Systems 35 (2010) 315-334 329

a patternq b patternv C to d

@ &) ©

I Ea ba
b b \
* 6

c@/bb

t. e t f indu. patt. g indu. patt.
@0, b b(28)
@ ’ z i\@ ’ * b ‘I.
=N o b NofRol ‘D

N ¢ @ é) b
c@® @+

Fig. 12. Generating maximal rewriting.

we can somehow separate them from forming structurally
a joint-force, then they can become more manageable.

Theorem 3.10. The set of rewritings generated by the
corollary of Theorem 3.3 is maximal if the following
conditions hold true for pattern q: (1) any node labeled * is
not incident with a D_edge, and (2) if a leaf is labeled *, then
its parent is not.

Idea of Proof. We consider a special canonical model of v
for q, t;+1, where L is the length (in nodes) of the longest
star-path in g. We can show that for any trap embedding e
from q to t;. 1, every node in ¢ must be matched to a non-
rubber node in t; .1, except for some leaf node, which may
be matched to a rubber node. Note that non-rubber nodes
in t; .1 are copies of the nodes in v. Based on this fact, for
any other canonical model t of v for q, we can form a trap
embedding f from q to t by simulating e, i.e., we map each
node of g to the node in t that is the copy of the same node
in v for e. Then we can show that the induced pattern for
t;+1 under e is also an induced pattern for t under f. By the
corollary of Theorem 3.3, Py, ,, the set of all the induced
patterns for t;.q, is a set of compensations. Then by the
theorem itself, any other compensation is contained (i.e.,
pattern containment) by Py, ... Thus, the compensations in
Py, ., correspond to a maximal rewriting. (Refer to Appen-
dix C for a formal proof.) O

The above theorem is true whether the corollary returns
an empty set or not. That is, if no pattern meets the
condition of the corollary, then there does not exist a
rewriting. Also, from the proof of the theorem, to obtain a
maximal rewriting, we need to consider a single canonical
model of v for q only, i.e., t;.7. This can be done in
polynomial time. Note that if no nodes in q are labeled *,
then the two conditions in the theorem are trivially true.
Thus we immediately have the following.

Corollary. If q belongs to the sub-class XP/" /- I then the
rewriting generated by the corollary of Theorem 3.3 is
maximal.

The result stated by the corollary is weaker than
restricting the entire problem to the sub-class Xpl/" /- Il
On the other hand, if we do restrict both p and g to that
subclass, we will have a stronger result, which will be
introduced shortly.

Example 3.10. Consider Fig. 12. The only node labeled *
in g is 2, which is not incident with D_edges. Thus the
condition in Theorem 3.10 is met. Let us explain some
points in our proof to see why the claim in the theorem is
true. Since the longest star-path contains only one node,
we have L=1. Thus there are three canonical models,
depicted in 12c, 12d and 12e. We consider the
2-Extension, t;. The rubber path is <20, 24>. We
can see that no node in g can be matched to the two
inner nodes, 22 and 23. Consider a trap embedding e;
from q to t[24~#] defined as: e;(0)=20, e(1)=24,
e1(2)=eq1(3)=e1(4)=#. This results in the induced pattern
depicted in Fig. 12.f. Now, consider t;. From trap
embedding e;, we have trap embedding e’; from q to t;:
e'1(0)=14, e1(1)=17, e1(2)=€'1(3)=¢€1(4)=#, where 14
and 20 are copies of 5, 17 and 24 are copies of 7, etc.
Thus, e’; results in same induced pattern as that in 12f.
This can be repeated for to. This means the induced
pattern in 12f is shared by all the canonical models. The
same can be said for the induced pattern in 12g. Thus,
concatenating 12f and 12g with v, we get the maximal
rewriting for q using v.

The above results are related to trap embeddings. They
are not universally applicable to the concept of trap
relays. This is because the latter has weaker modeling
power than the former. To make the maximality also hold
for relay, we need to make the conditions stronger.

Theorem 3.11. The set of all the rewritings generated by

Theorem 3.7 is maximal if both q and v belong to subclasses
xpl 5 11 op xpl I L1

Proof for XP!" " 1. Let r, be the return node in v. Since v
does not contain D_edge, any canonical model of v for q
does not contain rubber path. This means there is exactly
one canonical model t of v, which is identical to v in
shape. Let P,={induced|f, r,]If is a trap relay from q to
v[r,~#]}, and P,={induced[e, m,(r,)]|e is a trap embedding
from q to t[w{r,)~#]}. Let e: nodes(q)— nodes(t[7,(r,)~#])
be a trap embedding. We define a mapping f: nodes(q)—
nodes(v[r,~#]) as follows. For all n e nodes(q), let
fin)=n,""(e(n)) if e(n)##, and f{n)=# otherwise. We prove
that f is a trap relay. First, e(root(q))=root(t)###. Thus
flroot(q))=mn,"(e(root(q))=m,"'(root(t))=root(v). Second,
assume n e nodes(q)—{root(q)}. If e(n)##, then label(n)#*
implies label(n)=label(e(n))#z. Thus label(e(n))=
label(wr,~!(e(n)))=label(f{n)). If e(n)=#, we have fln)=#.

330 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

Let (ny, ny)» be a C_edge in q. Assume e(n;)##. Then
fin))=mt,"Y(e(ny))#%#. If e(ny)##, then {e(n;), e(n,)> is an
edge in t, imply <7, !(e(n;)),m: '(e(n2))> is a C_edge in v.
If e(ny)=#, then e(ny)=n(r,) and f(ny)=#. Thus
fin)=m"(e(m))=m,"(mdry))=ry. meaning (flm), finz)>
is a C_edge in v. Now assume e(n;)=#. Then e(n,)=#, and
finy)=f(ny)=#. Thus fis a trap relay. Note that for any node
n, fin)=# if and only if e(n)=#. Thus induced I[f,
ry]=induced|[e, m{r,)]. This means induced|e, 7 {r,)]€P,.
Since e is any trap embedding, we have P, P,. Let c be any
compensation for q using v. By Theorem 3.3, {c}< 4P,
Thus {c}< &P,. This means P, is maximal .

Proof for XPU/MN In this case, a trap embedding
cannot map the nodes in g to the rubber nodes in any
canonical model ¢t of v. We define P, and P; the same way
as in the case for XP!""I'll. The wording of the argument is
almost identical to that case. The only exception is that
following each occurrence of word ‘C_edge’, insert a
‘(D_edge), and following each occurrence of word ‘edge’,
insert a ‘(path). Also, the sentence ‘If e(n,)=#, then
e(ny)=m{(r,) and flnx)=#. Thus flny)=m, '(e(ny))=
7, (my(r,))=r,." should be replaced by ‘If e(n,)=#, then
e(ny)=(<=)mn{r,) and flny)=#. Thus finy)=n;"(e(n))=
e N(mdry)=(< =), O

4. Related work

Query containment for XML queries has been studied
extensively. As a result, significant results have been
generated. In [1,12,23], it has been shown that the
containment problem for XPath queries in class XP!" /I
(-1 #] is coNP-hard and is in P when the problem is restrict
to the subclasses XPU/- /- 111 or XpU- /- *1 or XpU- [} #] The
strength and weakness of homomorphism-based and
canonical model-based methods are discussed in detail
in [12]. In [15,23], the authors further extend the results
to the case where disjunctions, DTDs and some limited
predicates are allowed.

Query rewriting using views has been studied exten-
sively for relational databases [9,11,14,17,18]. As a result,
the technologies, both in theoretical foundations and in
methodologies, are maturing. A comprehensive survey for
the problems and solutions for relational databases are
given in [9]. In [3,7,13,16], the authors study the query
rewriting problem in a general context of semi-structured
data. Several works have studied this issue for XML data
in specific contexts recently. Most of them study the
complete rewritings [2,4,6,20,21,22]. Among these works,
the ones closest to ours in paradigm, i.e., based directly on
query containment, are in [2,21,22]. In [2], the authors
introduce an algorithm that systematically matches all
the nodes in a view to those in the query. A successful
matching signifies the existence of a complete rewriting
using the view. The information collected from the
matching phase is then used to generate rewriting. Their
method of matching is based on the concept of homo-
morphism introduced in [12]. In [22], the authors present
some theoretic as well as algorithmic approaches for the
problem of query rewriting using views. They introduce
the idea of concatenation of a compensation pattern and a

view. This simplifies the analysis of the problem without
compromising the generality. Their method is complete
for the three subclasses of XP! /- ' *_Qur previous work
in [21] discussed some theoretic aspects relating to how
to determine the existence of a query rewriting using
views for multiple return nodes. It nonetheless is based on
a simplified model where a view itself serves as a
rewriting. Thus, how to generate a rewriting is not an
issue. The only work we know of that study incomplete
rewriting is in [10]. Their key concepts, ‘useful embed-
ding’ and ‘clip-away tree’, are the counter parts of our
‘trap embedding’ and ‘induced pattern’. (The following
comparison is for purpose of clarifying the differences
between the two methods, and not meant to be critical of
the method in [10]. The authors in [10] dealt with a
context without wildcards, as such it was not their
intention to circumvent the problems caused by wild-
cards.) Useful embedding is based on homomorphism
[12], and is defined from a query to a view. It requires the
latter to preserve the structural information of the former.
This requirement is both sufficient and necessary for the
existence of maximal rewriting in class XPl /- /- T-11 [10]. In
class XPU" /- -1 "1 however, it is reduced to a sufficient
condition. This is because within this class, in many cases
where a maximal rewriting exists, the structural informa-
tion of the query cannot be preserved in the view. Our
concept of trap embedding is defined from a query to the
canonical models of a view. It is both necessary and
sufficient for the existence of maximal rewriting in class
XPpU- /11171 (Refer to Theorem 3.3. and the interpretation
following the proof.) The trap embedding method, which
is based on a weaker version of the theorem (specified in
the corollary that follows the theorem), can generate
maximal rewritings in some common cases where the
wildcard is present. For the trap relay method, although it
is weaker than trap embedding method, it nonetheless is
still strictly stronger than useful embedding. This is
because a trap relay requires preserving the structural
information only for C_segments, not for F_segments. The
correctness is still guaranteed due to the ability of an
F_segment to perform prefix-suffix matching. Thus, for
example, in Fig. 10, no useful embedding exists from A; to
U1, since node 2 cannot be mapped to node 9 or any of its
descendents, but trap relay g; is allowed to map nodes
2-9. (As a matter of fact, it can be proven theoretically
that in class XP!/- /- ['1 "1 3 uyseful embedding is necessarily
a trap relay, but not vice versa.)

The work in [19] discusses the issue of efficiently
maintaining a materialized view in the face of updates.
The work in [5,24] study how the queries over the target
schema can be answered using the views over the source
data, and hence provide a way for schema integration.
These works assume the target schema and the source
schema are heterogeneous, and therefore a mapping
between the two that resolves semantic heterogeneity is
crucial for the solution. It is well known, however, that
resolving semantic heterogeneity is a difficult problem,
cannot be fully automatic, and its accuracy is not without
question in many cases. In our context, both the query and
the view use the same set of XPath labels, and use the
standard syntax and semantics specified by the W3

J. Tang, A.W. Fu / Information Systems 35 (2010) 315-334 331

consortium [25]. Thus, semantic heterogeneity does not
exist. (However, if the problem does contain semantic
heterogeneity as a component, our method is not directly
applicable.)

5. Summary

Although the benefits of query rewriting using views
have been well appreciated for the relational database, it
starts to emerge as a research topic for XML data only in
the last few years. Although the problem statements are
similar in both contexts, due to the tree-based structures
of XPath queries and XML documents compared with
table-based structure for relational data, the problem
posts very different challenge for XML data. While most of
the work approaching this problem is restricted to
equivalence rewriting, we study this problem under the
assumption that the original query and its rewritten
version are not necessarily equivalent. Our study is
restricted to a subclass of XPath queries that consists of
four kinds of symbols, /, //, [-], *. We first propose a model
for the problem, and introduce some related concepts.
Then, we look into the issue that, given a query q, and a
view v, how a rewriting for q using v is found. The general
framework for our study is query containment. The key
notion underlying our approach is trap embedding. We
provide two alternatives, which have different character-
istics in terms of generalities and performances. We feel
this is of practically significant since a user can adopt one
based on his/her specific requirement. We also provide
conditions under which the rewritings generated by our
algorithms are maximal.

In a context where equivalence requirement is re-
moved, maximality becomes the most desirable property
that any rewriting technique looks for. Unfortunately, as
alluded by Theorem 3.3, there may not exist an efficient
algorithm that can generate a maximal rewriting in XP! /- /
» 'l "1 in the general case. Therefore, an interesting
question that deserves further study is: what is the
weakest restriction on XP! - /- I "I ynder which such an
efficient algorithm exists? We have given some conditions
under which our methods can generate maximal rewrit-
ing using views. However, it is not clear to us at this time
whether or not these conditions can be further weakened
without compromising the results. Our second method is
more efficient compared with the first one, and can
generate maximal rewriting for subclasses XP! /- [l and
XpU- " ['1l_However, we do not have the similar result for
subclass XP! /- *1. At this time, we are not aware of any
efficient algorithm that can generate a maximal rewriting
for this subclass without further restrictions. Whether or
not such an algorithm exists deserves further study.

Appendix A. Proof of Lemma 3.2

We first prove another lemma.

Lemma. Let q be a pattern and t[b~#] be a tree with
trapping node. Then e: nodes(q)— nodes(t[b~#]) is a trap
embedding if there is a pattern qo<q with root(qo)=root(q)
such that (1) e is an embedding from qo to t when it is

restricted on nodes(qo), (2) for all n e nodes(q)-nodes(qo),
e(n)=+#, (3) for all n;enodes(qo), n,enodes(q)-nodes(qo), if
{ny, ny) is a C_edge, then e(ny)=b, and if {ny, ny) is a
D_edge, then e(n{)< =b.

Proof. Note that since qo is a tree structure, Vni,n, €
nodes(q): [nxenodes(qo) & n;<n,=n;enodes(qo)]. We
show e meets the conditions in Definition 3.1. First,
e(root(q))=e(root(qe))=root(t). Condition 1 in the defini-
tion, is true. Second, let n € nodes(q). If n € nodes(qop),
then either label(n)=*, or label(n)=Ilabel(e(n)), else n e
nodes(q)-nodes(qo), in which case by condition 2 in the
lemma, e(n)=#. Condition 2 in the definition is true. Let
ny, N> € nodes(q). Assume <nq, ny)» is a C_edge (D_edge).
If e(n;)=#, then n; e nodes(q)-nodes(qo). By the above
note, n, € nodes(q)-nodes(qp). Thus e(ny)=#. Assume
e(ny)##,i.e., ny € nodes(qp). If n, € nodes(qg) also, e(n;) is
a parent (ancestor) of e(ny) in t. If n, e nodes(q)-
nodes(qo), then e(n,)=#. By condition 3 in the lemma,
e(ny)=b (e(n1)<=b). This means e(n;) is a parent
(ancestor) of e(ny) in t[b~#]. This proves Condition 3 in
the definition. O

Lemma 3.2. Let q be a pattern, where ry is the return node.
Let t and s be trees, and benodes(t). Then it is true that:

1. If there is a trap embedding f: nodes(q)— nodes(t[b~#])
and an embedding g: nodes(d)— nodes(s) where d=in-
duced[f, b], then e: nodes(q)— nodes(s®pt), defined as:
e(n)=f(n) if fin)##, and e(n)=g(n) otherwise, is an
embedding such that e(rq)=g(rq).

2. If there is an embedding e: nodes(q)— nodes(s®pt) such
that e(ry) € nodes(s), then f: nodes(q)— nodes(t[b~#])
defined as: f(n)=e(n) if e(n) e nodes(t), and f(n)=#
otherwise, is a trap embedding. Let d=induced][f, b] be its
induced pattern. Define g: nodes(d)— nodes(s) as:
g(root(d))=root(s)(=b), and g(n)=e(n) for n # root(d),
then g is an embedding, and g(rq)=e(ry).

Proof. Part 1: We need to prove e is an embedding. Let n
e nodes(q). Since either e(n)=f(n) or e(n)=g(n), and both f
and g meet the node condition, e also meets the node
condition. Let ny, n, € nodes(q). If both fin;)## and
finy)##, then e(n{)=f(n1) and e(n,)=f(n,). Since the edge
condition is met for n; and n, under f, it is also met under
e. Similar argument applies to the case where both
finy)=# and f(ny)=#. Now assume f(n;)## and f(ny)=#.
Thus, e(n;)=f(n1), and e(n,)=g(n,). First assume {ny, ny>
is a C_edge. By the definition of a trap embedding, f{n{)=b.
By the definition of an induced pattern, n, is a C_child of
root(d). Thus, g(n,) is a child of g(root(d))=root(s) in s, and
hence a child of b in s@pt. Now assume <{n;, ny> is a
D_edge. Thus either f{ni)=b, or f{n;)<b, and n, is a
D_child of root(d). This means g(n,) is a descendant of
g(root(d))=root(s) in s, and hence a descendant of b in
sdpt. This in turn implies g(n,) is a descendant of f(n;).
Since d is non-empty, either f{ry)=b or f(ry)=#. In the
former case, root(d)=rq. Thus g(rg)=root(s)=b=f(rq)=e(ry).
In the latter case, e(rq)=g(rq).

Part 2: First note that vn; € nodes(t), vyn, € nodes(s)-b,
[n> not(<)nq]. Let T={n|nenodes(q) & e(n) e nodes(t)

332 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

and S={n|n € nodes(q) & e(n) € nodes(s)-b}. Thus TNS=¢
and TuS=nodes(q). Since e is an embedding, vm,eT,
vmyeS, [m, not(<)m,]. Let S;={n|neS & parent(n)eT}.
We claim vn, €S, In, €Sy, [np<ny]. To prove, let xeS and y
be the oldest ancestor of x in S. Since root(q)eT and
root(q)< =y, parent(y)eT. The claim follows. Denote
by p, the sub-pattern rooted at n in g, we have
Unes, nodes(py) =S. Also, if we remove all the nodes in S
from g (along with the associated edges), we obtain a
pattern, gr, which is a sub-graph of q, and nodes(qr)=T.
We first show fis a trap embedding. Note that when f is
restricted on nodes(qy), it is an embedding to t, and for all
neS, f(n)=#. Let n; € nodes(qr) and nyeS. If (ny, ny) isa
C_edge, then e(n;) is a parent of e(n,). Since e(n;) e
nodes(t) and e(n,) e nodes(s)-b, e(n1)=b, i.e., f{ni)=b. If <
ny, ny» is a D_edge, then e(ny) is an ancestor of e(n;). Thus
e(n1)<b. By the above lemma, fis a trap embedding. Now,
we show g is an embedding from d to s. First, note that Vi,
j€S1, [pinpj=®]. This follows directly from the fact that
both p; and p; are tree structures, and i not(<) j and j
not(<)i. Thus, VjeS;, [j is a child of root(d)], implying
nodes(d)-root(d)=S. Since e(S) < nodes(s)-b, g(S) <
nodes(s)-b. Thus g is a mapping from nodes(d) to
nodes(s). By definition of an induced pattern, label(root(-
d))=label(b). Let neS. Either label(n)=" or label(n)=labe-
I(e(n)). The latter implies label(n)=1abel(f{n)). Let ny, n, €
nodes(d). If ny, ny €S, then <ny, n,) is a C_edge (D_edge) in
d, and e(n;) is a parent (ancestor) of e(ny) in s, implying
g(ny) is a parent (ancestor) of g(np) in s. Assume
ny=root(d) and n, e nodes(d)-root(d). If {nq, ny) is a
C_edge in d, then {(ng, ny» is a C_edge in q for some ng €
nodes(qr), implying e(np) is a parent of e(n,) in s @, t. This
can happen only when e(ng)=b=root(s). Recall e(n,) e
nodes(s)-b, g(ny)=b and g(n,)=e(n,). Thus g(n;) is a parent
of g(ny) in s. If <nq4, ny)> is a D_edge, from the expressions
recalled above, it is trivial to see g(n,) is a descendant of
g(nq). Thus, g is an embedding. Finally, since e(ry) €
nodes(s), either e(ry)=b (i.e., root(s)) or e(ry) € nodes(s)-b.
In the former case, f{rq)=b, and therefore root(d)=ry,
implying g(rs)=b. In the latter case, f{rg)=#, implying
rq=rq. We have e(rq)=g(ry)=g(rq). O

Appendix B. Proof of Lemmas 3.5 and 3.6

We first show an additional lemma.

Lemma A. Let ¢(A)=u be a trap relay, and e(u)=t be an
embedding. If ¢(A) is in one of the three base cases in
Definition 3.3, then there is a trap embedding f(1)=t.

Proof. If ¢(4) is a trap mapping, then p=#. Since e(u)=t,
we also have t=#. Define f(n)=# for all n € nodes(4). So f{.)
is a trap embedding. If &(4) is a C_segment mapping,
define f{n)=e(e(n)). Since both e(.) and &(.) meet node and
edge conditions, clearly f{.) also does. Thus it is a trap
embedding. Now assume ¢(4) is an F_segment mapping.
Since both ¢(.) and e(.) are 1-1 mapping, we have
|4l <|u| <|t]. By Theorem 3.4, the claim follows. O

Lemma 3.5. Let A and u be two path patterns. Assume
&(1)=u[b~#], and ¢(1) is a trap relay. Let t be a tree path,
and e(u[b~#])=t[c~#] be an embedding. Then (1) there is a
trap embedding f(A)=t[c~#], and (2) let d;=induced[e, b]
and dy=induced(f, cl. Then (d1=d>) except
(label(root(d;))+*= label(root(d;))=label(root(d;))).

Proof. From Definition 3.4, A=a;Aiay,...,a,4, and
ulb~#]=biu1bapto,....bn_1tn_1b, where n>1 and b,=#,
such that for all 1<i<n—1, &(a;dia;+1)=bip;bi.1 is either a
C_segment mapping, or an F_segment mapping, and
&(ann)=by is a trap mapping. Also, from the definition of
an embedding, t[c~#]=citiCa,...,.Ch_1tn_1C, Where c,=#,
such that for all 1 <i<n-1, e(bjwbi+1)=citici+1. By Lemma
A, for all 1<i<n-1, there is a trap embedding
flailiai+1)=citici+1, and a trap embedding f,(a,A,)=cCp.
Define f: nodes(1)— nodes(t[c~#]) as: for all 1<i<n-1,
fin)=f{(n) if nenodes(a;A;a;.1). Clearly, fis a trap embed-
ding. In addition, induced[f, c]=xa,A, where {x, a,) is a
C_edge (D_edge) iff a,, is a C_child (D_child) in 1. We also
have induced|e, b]=ya,i, where (y, a,)> is a C_edge
(D_edge) iff a, is a C_child (D_child) in /. Note that the
only difference between ya,A, and xa,/, is in their roots, y
and x. We have label(y)=1label(b) and label(x)=1abel(c).
Since e(b)=c, label(b)#*= label(b)=1abel(c). This implies
label(y)#*= label(y)=label(x). O

Lemma 3.6. Let q and v be patterns, where v+ &. Let r; be
the return node in v. Assume g: nodes(q)— nodes(v[r;~#]) is
a trap relay. Let t be a tree and e: nodes(v[r;~#])—
nodes(t[r>~#]) be an embedding. Then there is a trap
embedding f: nodes(q)— nodes(t[r,~#]) such that (1) for
each block 7 in q, f(A)=e(g(/)), and (2) let induced|g, r;1]=d;,
and induced(f, ra]=ds, then (d;=d>) except
(label(root(d;))#*= label(root(d;))=label(root(d>))).

Proof. Let . be any block in g, u be a path pattern in
v[r;~#] such that g(1)=u, and ¢ be a path in t such that
e(1)=0. By Lemma 3.5, there is a trap embedding f;(1)=0
that satisfies the two conditions in Lemma 3.6. Define f:
nodes(q)— nodes(t[r;~#]) as: for all nenodes(q),
fin)=f;(n) if nenodes(1). We first prove f is a well defined
mapping. If n is not a fork point, then f{n) is uniquely
determined. Assume n is a fork point. Without loss of
generality, let n=start(a) and n=start(f}) where « and f
are different blocks. The arguments for the other cases
are similar. Note g(n)=start(g(a))=start(g(f)), and
e(g(n))=start(e(g(a))=start(e(g(B)). Since f(a)=e(g(a))
and fa(B)=e(g(B)), fun)=start(e(g(x)) and fy(n)=
start(e(g(p)), implying f,(n)=fz(n). Thus f is well defined.
We now prove f is a trap embedding. First, let 1 be such
that start(A)=root(q). Thus g(start(1))=root(v[r;~#]),
implying (start(u)=root(v[r;~#]). Thus start(c)=
root(t[r,~#]). Combine the above equalities, we have
flroot(q))=root(t[r,~#]). Since any node and any edge in q
must belong to some block 4, the node and edge
conditions follow directly from the fact that f=f, and f;
is a trap embedding. Thus, fis a trap embedding. We now
show f meets the two conditions in the Lemma. From the
way f is defined, condition 1 is clearly true. For condition
2, let dy=induced|g, r;]. Let root(q)=ao, root(v[r;~#])=bg,
the trapping node in v[r;~#] be by, root(t[r,~#])=co, and

J. Tang, A.W. Fu / Information Systems 35 (2010) 315-334 333

the trapping node in t[r,~#] be c;. Let (root(d;), a,...,az >
be a path in d; where a; is a child of root(d;) and a, is a
leaf in dq, and 0= <ay,...,as,...,a2 >, which is a path in g. It
must be the case that induced[gy, r1]=<01, a1, ..., G2
where label(oq)=1abel(root(d;)). Note that a; must be the
first note in 0 such that g(a;)=b,. Since g(ag)#b1, ap#a;.
Let 0=7,¢ ... 7,4 ... &7, where each 7; is a block, and
start(ty) < a; < =end(ty), i.e., Ty is the first block in 6 that
contains a;, and hence Vi: [k <i<m= g(t;)=b;=#]. Thus
induced[gy, ri]=induced[g;,, 1] ®Tk+1,...,¢Tm. On the
other hand, since # is by in v[r~#], we have g(tx)=p1r1bq
for some path p; in v[r;"#]. Since <{ry, by is a C_edge, and
by is the only node labeled # in v[r;~#], and {1y, ¢;) isa
C_edge, and c; is the only node labeled # in t[r,~#], we
have e(uqr1b1)=011>2¢1 for some o4 in t[ro~#]. By Lemma
3.5, t(tk) = fr,(tx) = o112¢1 and, letting dz=induced|g,, 11]
and ds=induced|f;, 12], we have (d3=d;) except
(label(root(ds))#* = label(root(ds))=1abel(root(d,))).
This implies induced[f;,, T2] ®Tk+1,...,9T=<02,
ai,...,az », where label(o1)#*= label(o;)=1abel(0,). Since
e(bi)=c;, by Lemma 3.5, we have Vi: [k<i<m=
fr(ti)=c1=#]. This means induced|fy, rz]=induced|[f;,, 2]
®Ti+1,..., ® Ty Thus, induced[fy, r2]=<0,, ay, ..., az). Let
dr=induced[f, r»]. We must have (root(d,), as,...,a2) is a
path in d;, and label(o,)=label(root(d;)). Noting labe-
1(0q)=label(root(d;)), we have label(root(d;))#* = la-
bel(root(d;))=1abel(root(d;)). Similar argument can also
show that for any path <root(d,), ai, ..., az» in do, there is
a path <(root(d;), aj, ..., az» in d; such that label(-
root(d;))#* = label(root(d;))=1abel(root(d,)). Thus condi-
tion 2 follows. O

Appendix C. Proof of Theorem 3.10

Theorem 3.10. The rewriting generated by the corollary
of Theorem 3.3 is maximal if the following conditions hold
true for pattern q: (1) any node labeled * is not incident with
a D_edge, and (2) if a leaf is labeled *, then its parent is not.

Proof. Consider the (L+1)-extension t; . of v for g, where
L is the number of nodes in the longest star-path in g. Let
g and r, be the return nodes in q and v, respectively. Let e:
nodes(q) — nodes(t.+1[my, ., ,(r,)~#]) be a trap embedding.
Let n e nodes(q). Assume n is an internal node. If
label(n)#*, then label(n)=label(e(n)) # * which means
e(n) is not a rubber node. (Recall a rubber node is labeled z
that no label other than * in g can be matched.) If
label(n)=*, then let A be the longest path containing n in
which all the nodes are marked *. By condition 1, A is a
star-path. By condition 2, end(4) is not a leaf node. This
means there is a path aib in g where label(a)#* and
label(b)+*. Since |A| <L and every rubber path in t;,; has
a degree of L+1, we have vnenodes(1): [e(n) is not a
rubber node in t;.1]. Now assume n is a leaf node in q. If
e(n) is a rubber node in t; .1, then label(n)="*. By condition
1, (parent(n), n) is a C_edge, and by condition 2
label(parent(n))#*. This means <e(parent(n)), e(n)) is
an edge and e(parent(n)) is not a rubber node in t;.¢. In
summary, if n is an internal node in g, then e(n) is not a
rubber node in t; .1, and if n is a leaf node such that e(n) is
a rubber node, then <e(parent(n)), e(n))> is an edge and

e(parent(n)) is not a rubber node in t;.;. Let t be any
canonical model of v for q, we define a mapping f:
nodes(q)— nodes(t[mr,)~#]) as follows. If n is an
internal node, or a leaf node in q but e(n) is not a rubber
node in t;.;, then let f(n):(nton[ﬁlse)(n) if e(n)##,
and fin)=# otherwise. If n is a leaf node and e(n) is a
rubber node, then let f{n)=child(r,(a)) in 7 <a,b)) where
<a, by eD_edges(v) and e(n) em ,(<a,b)). We now
prove that f is a trap embedding. First, root(q) is an
internal node and e(root(q))=root(t;.1)##. We have
f(root(q)) = (7Tt°7fg1+1 -e)(root(q)) = (Mo, 17")(root(ty +1))
= m(root(v)) = root(t). Second, let n e nodes(q)-root(q).
Assume n is an internal node, or a leaf node but e(n) is not
a rubber node in t;.q. If e(n)##, then label(n)#*=
label(n)=1abel(e(n)), which implies label(e(n))
=label(n511(e(n)));&*, which in turn implies label
(me(my, ! (e(n))))=label(r;! (e(n))). Combine the above, we
have label(n)=Ilabel(fin)). If e(n)=#, we have label
(fin))=#. Now assume n is a leaf and e(n) is a rubber
node. We must have label(n)=*. We have
proven the root and node conditions. For the edge
condition, let <{ny, n,» be a C_edge (D_edge) in q. Note
n; can only be an internal node in q. We consider the
following cases.

Case 1: n; is an internal node in q, or a leaf node but
e(ny) is not a rubber node in t; ..

Subcase 1: e(ny)## and e(n,)##. Thus (e(ny), e(ny)) is
an edge (path) in t; .1, implying <na1“ (e(ny)), nﬂ] (e(n))>
is a C_edge (path) in v. This means <n[(ng1ﬂ(e(n1))),
”t(”511(e(”2)))>' or {f(ny), f(nz)>, is an edge (path) in t.

Subcase 2: e(n,)## and e(n,)=#. Again, <e(n,), e(ny)) is
an edge (path) in t; .. Thus e(nq)=(<=)m, ,(ry). This
means 7! (e(ny))=(<=)r, implying m(m;' (e(n)=
(< =)n{r,). By definition of f, f(n,)=(<=)m(r,) and
finy)=#. Noting # is a child of n{r,) in t, {f{ny), finz)) is
an edge (path) in t.

Subcase 3: e(n,)=# and e(ny)=#. By definition of f,
fin)=flnz)=#.

Subcase 4: e(ni)=# and e(n,)##. Since e is a trap
embedding, this case is impossible.

Case 2: n; is a leaf node in g, and e(n;) is a rubber node
in t;+1. We must have label(ny)=". Thus <{(n;, ny) is a
C_edge and label(n;)#* in q. Let {a, b) eD_edge(v) such
that e(ny) eny,,,(<a,b)). We have shown that e(n,) is a
child of e(n;). Thus it must be the case that e(nq)=m, (),
otherwise e(n;) would be a rubber node, which is
impossible. Note e(n;)+##, otherwise, e(n,) cannot possi-
bly be a rubber node. By definition of f fn;)=
ﬁt(ﬂtﬂ](e(n1)))=7tr(7T{Ll+](7TrLH(a)))=7Tt(a), and flnz)=
child(m(a)). Thus, {finy), finz)> is an edge in t. We have
proven the edge condition. Note that by our definition, for
any n e nodes(q), fin)=# if f e(n)=#. Thus, induced|e,
7y, ., (ry)]=induced[f, 7«(r,)]. Since t is an arbitrary canoni-
cal model of v, and e is an arbitrary trap embedding from g
to tr+1[my, , (r)~#], Py, , = P; for all t. By the corollary of
Theorem 3.3, R={d®v:d<=P, ,} is a rewriting for g
using v. Let x®v be any rewriting for g using v. By

334 J. Tang, AW. Fu / Information Systems 35 (2010) 315-334

Theorem 3.3, {x}<= &P, ,, implying {x®v}< &R. Thus R is
maximal .0O

References

[1] S. Amer-Yahia, S. Cho, L.V.S. Lakshmanan, D. Srivastava, Minimiza-
tion of tree pattern queries, in: SIGMOD, 2001, pp. 497-508.

[2] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, A framework for using
materialized XPath views in XML query processing, in: Thirtieth
VLDB Conference, 2004, pp. 60-71.

[3] D. Calvanese, G. Giacomo, M. Lenzerini, M. Vardi, Answering regular
path queries using views, in: Sixteenth International Conference on
Data Engineering, 2000, pp. 389-398.

[4] L. Chen, E. Rundensteiner, ACE-XQ: a cache-aware XQuery answer-
ing system, in: WebDB, pp. 31-36.

[5] V. Cristophides, S. Cluet, J. Simeon, On wrapping query languages
and efficient xml integration, in: SIGMOD Confernce, 2000.

[6] A. Deutsch, V. Tannen, Reformultion of XML queries and con-
straints, in: Ninth International Conference on PODS, 2003.

[7] G. Grahne, A. Thomo, Query containment and rewriting using views
for regular path queries under constraints, in: Ninth International
Conference on PODS, 2003, pp. 111-121.

[8] A.Y.Halevy, Answering queries using views: a survey, VLDB Journal
10 (2001) 270-294.

[9] T.Kirk, A. Levy, Y. Sagic, D. Srivastava, The information manifold, in:
AAAI Spring Symposium on Information Gathering, 1995.

[10] LV.S. Lakshmanan, H. Wang, Z. Zhao, Answering tree pattern queries
using views, in: Proceedings of the 32nd VLDB Conference, 2006.

[11] A. Levy, A. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries
using views, in: The 14th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principle of Database Systems, 1995.

[12] G. Miklau, D. Suciu, Containment and equivalence for an XPath
fragment, in: ACM PODS, 2002, pp. 65-76.

[13] T. Milo, D. Suciu, Index structures for path expressions, in: ICDT,
1999, pp. 277-295.

[14] P. Mitra, An algorithm for answering queries efficiently using views,
in: Australian Database Conference, 2001.

[15] E. Neven, T. Schwentick, XPath containment in the presence of
disjunction, DTDs and variables, in: ICDT, 2003.

[16] Y. Papakonstantinou, V. Vassalos, Query rewriting using semistruc-
tured views, in: SIGMOD Conference, 1999.

[17] R. Pottinger, A. Levy, A scalable algorithm for answering queries
using views, VLDB Journal 10 (2-3) (2001) 182-198.

[18] X.Qian, Query folding, in: Twelfth International Conference on Data
Engineering, 1996.

[19] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A.E. Abbadi, K.S. Candan,
Maintaining XPath views in loosely coupled systems, in: Proceed-
ings of the 32nd VLDB Conference, 2006.

[20] J. Shanmungasundaram, J. Kiernan, E. Shekita, C. Fan, J. Funderburk,
Querying XML views of relational data, in: VLDB Conference, 2001.

[21] J. Tang, S. Zhou, A theoretic framework for answering XPath queries
using views, in: XSym, 2005, pp. 18-33.

[22] Wanhong Xu, Z. Ozsoyoglu, Rewriting XPath queries using materi-
alized views, in: Thirty-first VLDB Conference, 2005, pp. 121-480.

[23] P.T. Wood, Containment for XPath fragments under DTD con-
straints, in: ICDT, 2003, pp. 300-314.

[24] C. Yu, L. Popa, Constraint-based XML query rewriting for data
integration, in: SIGMOD Conference, 2004.

[25] XQuery: a query language for XML, <http://www.w3.org/TR/
xquery », 2003.

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery

	Query rewritings using views for XPath queries, framework, and methodologies
	Introduction
	A motivating example

	Concepts and definitions
	Pattern tree and input tree
	Embedding and query containment
	Specification of the problem

	Trap-based search methods
	Trap embeddings
	Concepts
	Induced patterns
	Trap embedding for query rewriting
	Algorithms

	Trap relay
	Fsegment and prefix-suffix matching
	Definition of trap relay
	A characterization of trap relay
	Searching for trap relays

	Maximality

	Related work
	Summary
	Proof of Lemma 3.2
	Proof of Lemmas 3.5 and 3.6
	Proof of Theorem 3.10
	References

