
Approximations to Magic: Finding Unusual Medical Time Series

 Jessica Lin Eamonn Keogh Ada Fu Helga Van Herle

 University of California, The Chinese University David Geffen School of

 Riverside of Hong Kong Medicine, UCLA

{jessica , eamonn}@cs.ucr.edu adafu@cse.cuhk.edu.hk hvanherle@mednet.ucla.edu

Abstract

In this work we introduce the new problem of finding time series discords. Time series discords are

subsequences of longer time series that are maximally different to all the rest of the time series

subsequences. They thus capture the sense of the most unusual subsequence within a time series.

While the brute force algorithm to discover time series discords is quadratic in the length of the time

series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while

guaranteed to produce identical results.

1. Introduction

The previous decade has seen hundreds of papers on time series similarity search, which is the task of

finding a time series that is most similar to a particular query sequence [3]. In this work we pose the

new problem of finding the sequence that is least similar to all other sequences. We call such

sequences time series discords. Figure 1 gives a visual intuition of a time series discord found in a

human electrocardiogram.

Figure 1: The time series discord found in an excerpt of electrocardiogram qtdb/sel102 (marked
in bold line). The location of the discord exactly coincides with a premature ventricular
contraction

As we shall show, time series discords are superlative anomaly detectors, able to detect anomalies in

diverse medical applications.

2. Related work and background

Our review of related work is exceptionally brief because we are considering a new problem. Some

of the notions used throughout this paper are described below.

2.1 Notation

For concreteness, we begin with a definition of our data type of interest, time series:

Definition 1. Time Series: A time series T = t1,…,tm is an ordered set of m real-valued variables.

For data mining purposes we are typically not interested in any of the global properties of a time

series; rather, we are interested in local subsections of the time series, which are called subsequences.

Definition 2. Subsequence: Given a time series T of length m, a subsequence C of T is a sampling

of length n m of contiguous position from T, that is, C = tp,…,tp+n-1 for 1 p m – n + 1.

One can see that the best “matches” to a subsequence (apart from itself) tend to be located one or two

points to the left or the right of the subsequence in question. Such matches have previously been

called trivial matches [1][2][5]. It is critical when finding discords to exclude trivial matches;

otherwise almost all real datasets have degenerate and unintuitive solutions. We will therefore take

the time to formally define a non-self match

0 200 400 600 800 1000 1200 1400

ECG qtdb/sel102 (excerpt)

0 200 400 600 800 1000 1200 1400

ECG qtdb/sel102 (excerpt)

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

Definition 3. Non-Self Match: Given a time series T, containing a subsequence C of length n

beginning at position p and a matching subsequence M beginning at q, we say that M is a non-self

match to C at distance of D(M,C) if | p – q| >= n.

We will use the definition of non-self matches to define time series discords:

Definition 4. Time Series Discord: Given a time series T, the subsequence D of length n beginning

at position l is said to be the Discord of T if D has the largest distance to its nearest non-self match.

We will denote the location of the discord as D.l and the distance to the nearest non-self matching

neighbor as D.dist. We have deliberately omitted naming a distance function up to this point for

generality. For concreteness, we will use the ubiquitous Euclidean distance measure throughout the

rest of this paper.

Definition 5. Euclidean Distance: Given two time series Q and C of length n, the Euclidean

distance between them is defined as:
n

i
ii cqCQD

1

2
,

 (1)

3. Finding time series discords

The brute force algorithm for finding discords is simple and obvious. We simply take each possible

subsequence and find the distance to the nearest non-self match. The subsequence that has the

greatest such value is the discord. This is achieved with nested loops, where the outer loop considers

each possible candidate subsequence, and the inner loop is a linear scan to identify the candidate’s

nearest non-self match. For clarity, the pseudo code is shown in Table 1.

Table 1: Brute Force Discord Discovery
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Function [dist, loc]= Brute_Force(T, n)
 best_so_far_dist = 0
 best_so_far_loc = NaN

For p = 1 to |T | - n + 1 // Begin Outer Loop
 nearest_neighbor_dist = infinity

For q = 1 to |T | - n + 1 // Begin Inner Loop
 IF | p – q | >= n // non-self match?

IF D(tp,…,tp+n-1, tq,…,tq+n-1) < nearest_neighbor_dist
 nearest_neighbor_dist = D(tp,…,tp+n-1, tq,…,tq+n-1)

End
 End // End non-self match test
 End // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist
 best_so_far_dist = nearest_neighbor_dist
 best_so_far_loc = p

End
End // End Outer Loop
Return[best_so_far_dist, best_so_far_loc]

The algorithm is easy to implement, and produces exact results. However, it has O(m2
) time

complexity which is simply untenable for even moderately large datasets. The following two

observations, however, offer hope to improve the algorithm’s running time.

Observation 1: In the inner loop, we don’t actually need to find the true nearest neighbor to the

current candidate. As soon as we find any subsequence that is closer to the current candidate than

the best_so_far_dist, we can abandon that instance of the inner loop, safe in the knowledge that

the current candidate could not be the time series discord.

Observation 2: The utility of the above optimization depends on the order which the outer loop

considers the candidates for the discord, and the order which the inner loop visits the other

subsequences in its attempt to find a sequence that will allow an early abandon of the inner loop.

The pseudo code is shown in Table 2. Note that the input has been augmented by two

heuristics, one to determine the order in which the outer loop visits the subsequences, and

one to determine the order in which the inner loop visits the subsequences. It is important to

note that the heuristic for the outer loop is used once, but the heuristic for the inner loop

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

takes the current candidate into account, and is thus invoked to produce a new ordering for

every iteration of the inner loop.

Table 2 : Heuristic Discord Discovery.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function [dist, loc]= Heuristic_Search(T, n, Outer, Inner)
 best_so_far_dist = 0
 best_so_far_loc = NaN

For Each p in T ordered by heuristic Outer // Begin Outer Loop
 nearest_neighbor_dist = infinity
 For Each q in T ordered by heuristic Inner // Begin Inner Loop

IF | p – q | >= n // non-self match?
IF D(tp,…,tp+n-1, tq,…,tq+n-1) < best_so_far_dist

Break // Break out of Inner Loop
End
IF D(tp,…,tp+n-1, tq,…,tq+n-1) < nearest_neighbor_dist

 nearest_neighbor_dist = D(tp,…,tp+n-1, tq,…,tq+n-1)
End

 End // End non-self match test
 End // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist
 best_so_far_dist = nearest_neighbor_dist
 best_so_far_loc = p

End
End // End Outer Loop
Return[best_so_far_dist, best_so_far_loc]

We have now reduced the discord discovery problem into a generic framework where all one

needs to do is to specify the heuristics. To gain some intuition into our new algorithm, and to hint at

our eventual solution to this problem, let us consider 3 possible heuristic strategies:

 Random: We could simply have both the Outer and Inner heuristics randomly order the

subsequences to consider. It is difficult to analyze this strategy since its performance is bounded

from below by O(m) and from above by O(m2
) (see below for explanation) and depends on the

data. However, empirically it works reasonably well. The conditional test on line 9 of Table 2 is

often true and the inner loop can be abandoned early, considerably speeding up the algorithm.

Magic: In this hypothetical situation, we imagine that a friendly oracle gives us the best possible

orderings. These are as follows: For Outer, the subsequences are sorted by descending order of the

non-self distance to their nearest neighbor, so that the true discord is the first object examined. For

Inner, the subsequences sorted in ascending order of distance to the current candidate. For the

Magic heuristics, the first invocation of the inner loop will run to completion, thereafter, all

subsequent invocations of the inner loop will abandoned during the very first iteration.

Perverse: In this hypothetical situation, we imagine that a less than friendly oracle gives us the

worst possible orderings. These are identical to the Magic orderings with ascending/descending

orderings reversed. In this case we are back to the original O(m2
) time complexity.

These results are something of a mixed bag for us. On one hand they suggest that a linear time

algorithm is possible, but only with the aid of some very wishful thinking. The following two

observations offer us some hope for a fast algorithm:

 Observation 3: In the outer loop, we don’t actually need to achieve a perfect ordering to achieve

dramatic speedup. All we really require is that among the first few subsequences being examined

we have at least one that has a large distance to its nearest neighbor. This will give the

best_so_far_dist variable a large value early on, which will make the conditional test in line on

line 9 of Table 2 be true more often, thus allowing more early terminations of the inner loop.

Observation 4: In the inner loop, we also don’t actually need to achieve a perfect ordering to

achieve dramatic speedup. All we really require is that among the first few subsequences being

examined we have at least one that has a distance to the candidate sequence being considered that

is less than the current value of the best_so_far_dist variable. This is a sufficient condition to

allow early termination of the inner loop.

We can imagine a full spectrum of algorithms, which only differ by how well they order

subsequences relative to the Magic ordering. This spectrum spans {Perverse…Random…Magic}.

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

Our goal then is to find the best possible approximation to the Magic ordering, which is the topic of

the next section.

4. Approximations to magic

Before we introduce our techniques for approximating the perfect ordering returned by the

hypothetical Magic heuristics, we briefly review the discretization technique: Symbolic Aggregate

ApproXimation (SAX) [6]. While there are least 200 different symbolic approximation of time series

in the literature, SAX is unique in that it is the only one that allows both dimensionality reduction and

lower bounding of Lp norms.

4.1 A brief review of SAX

A time series C of length n can be represented in a w-dimensional space by a vector
wccC ,,1

. The

ith element of C is calculated by the following equation:
i

ij

jn

w
i

w
n

w
n

cc
1)1(

 (2)

In other words, to transform the time series from n dimensions to w dimensions, the data is divided

into w equal sized “frames”. The mean value of the data falling within a frame is calculated and a

vector of these values becomes the dimensionality-reduced representation. This simple representation

is known as Piecewise Aggregate Approximation (PAA).

Having transformed a time series into the PAA representation we can apply a further

transformation to obtain a discrete representation. It is desirable to have a discretization technique that

will produce symbols with equiprobability [2][4]. In empirical tests on more than 50 datasets we

noted that normalized subsequences have highly Gaussian distribution [6], so we can simply

determine the “breakpoints” that will produce equal-sized areas under Gaussian curve. These

breakpoints may be determined by looking them up in a statistical table. Once the breakpoints have

been obtained we can discretize a time series in the following manner. All PAA coefficients that are

below the smallest breakpoint are mapped to the symbol “a”, all coefficients greater than or equal to

the smallest breakpoint and less than the second smallest breakpoint are mapped to the symbol “b”,

etc.

Figure 2 illustrates the idea.

Figure 2: A time series (thin black line) is discretized by first obtaining a PAA approximation
(heavy gray line) and then using predetermined breakpoints to map the PAA coefficients into
symbols (bold letters). In the example above, with n = 128, w = 8 and a = 3, the time series is
mapped to the word cbccbaab

4.2 Approximating the magic outer loop

We begin by creating two data structures to support our heuristics. First, we create a SAX

representation of the entire time series, by sliding a window of length n across time series T,

extracting subsequences, converting them to SAX words and placing them in an array where the

index refers back to the original sequence. Figure 3 gives a visual intuition of this, where both a and

w are set to 3.

0 20 40 60 80 100 120

-1.5
-1

-0.5
0

0.5

1

1.5

b

a
a

b

cc

b

c

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

Figure 3: The two data structures used to support the Inner and Outer heuristics. (left) An array
of SAX words, where the last column contains a count of how often each word occurs in the
array. (right) An excerpt of an trie with leaves that contain a list of all array indices that map to
that terminal node

Once we have this ordered list of SAX words, we can imbed them into an augmented trie where the

leaf nodes contain a linked list index of all word occurrences that map there. The counts of the

numbers of occurrences of each word can be mapped back to the rightmost column of the array. For

example, in Figure 3 if we are interested in the word caa we visit the trie to discover that it occurs in

locations 1, 3 and 731. If we are interested in the word that occurs at a particular location, lets say (m

– n) - 1, we can visit that index in the array and discover that the word cbb is mapped there.

Furthermore we can see by examining the rightmost column that there are a total of 2 occurrences of

that particular word (including the one we are currently visiting), however, if we want to know the

location of the other occurrence, we must visit the trie.

We can now state our Outer heuristic; we scan the rightmost column of the array to find the

smallest count mincount (its value is virtually always 1). The indices of all SAX words that occur

mincount times are recorded, and are given to the outer loop to search over first. After the outer loop

has exhausted this set of candidates, the rest of the candidates are visited in random order.

The intuition behind our Outer heuristic is simple. Unusual subsequences are very likely to map

to unique or rare SAX words. By considering the candidate sequences that mapped to unique or rare

SAX words early in the outer loop, we have an excellent chance of giving a large value to the

best_so_far_dist variable early on, which (as noted in observation 3) will make the conditional test in

line on line 9 of Table 2 be true more often, thus allowing more early terminations of the inner loop.

4.3 Approximating the magic inner loop

When candidate i is first considered in the outer loop we look up the SAX word that it maps to, by

examining the ith word in the array. We then visit the trie and order the first items in the inner loop in

the order of the elements in the linked list index found at the terminal nodes. For example, imagine

we are working on the problem shown in Figure 3. If we were examining the candidate C731 in the

outer loop, we would visit the array at location 731. Here we would find the SAX word caa. We

could use the SAX values to traverse the trie to discover that subsequences 1, 3, 731 map here. These

3 subsequences are visited first in the inner loop (note that line 8 of Table 2 prevents 731 from being

compared to itself). After this step, the rest of the subsequences are visited in random order.

The intuition behind our Inner heuristic is also simple. Subsequences that have the same SAX

encoding as the candidate subsequence are very likely to be highly similar. As noted in observation 4,

we just need to find one such subsequence that is similar enough (has a distance to the candidate than

the current value of the best_so_far_dist variable) in order to termination the inner loop.

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

c

c

b

a

c

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1

^
C1

^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

5. Emperical evaualtion

For each example below, we give the speed up factor over brute force search, the only reasonable

strawman.

5.1 Anomaly detection in electrocardiograms

Electrocardiograms (ECGs) are a time series of the electrical potential between two points on the

surface of the body caused by a beating heart. We have already considered the utility of discords in

one ECG in Figure 1. Figure 4 shows a very complicated signal with remarkable variability.

Figure 4: An ECG that has been annotated by a cardiologist (bottom bar) as containing one
premature ventricular contraction. The discord256 (bold line) exactly coincides with the heart
anomaly

Surprisingly, this ECG contains only one small anomaly, which is easily discovered by a discord. In

this problem our heuristic search algorithm is 909 times faster than brute force, taking us from an

offline ½ hour to a real time few seconds.

In Figure 5 we consider an ECG which has several different types of anomalies. Here the first 3

discords exactly line up with the cardiologists annotations. Here our algorithm was 779 times faster

than brute force.

Figure 5: An excerpt of an ECG that has been annotated by a cardiologist (bottom bar) as
containing 3 various anomalies. The first 3 discord600 (bold lines) exactly coincides with
the anomalies

6. References

[1] Duchene, F. Garbayl, C. & Rialle, V. (2004). Mining Heterogeneous Multivariate Time-Series for Learning

Meaningful Patterns: Application to Home Health Telecare. Laboratory TIMC-IMAG, Facult'e de

m'edecine de Grenoble, France.

[2] Chiu, B., Keogh, E. & Lonardi, S. (2003). Probabilistic Discovery of Time Series Motifs. In the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. August 24 - 27.

Washington, DC, USA. pp 493-498.

[3] Keogh, E. & Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and

empirical demonstration. In Proc. of the 8
th
 ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. Edmonton, Canada. July 23-26.

[4] Keogh, E., Lonardi, S. and Ratanamahatana, C. (2004). Towards Parameter-Free Data Mining. In

proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. Seattle, WA, Aug 22-25.

[5] Kitaguchi, S. (2004). Extracting Feature based on Motif from a Chronic Hepatitis Dataset. In proceedings of

the 18th Annual Conference of the Japanese Society for Artificial Intelligence (JSAI). Kanazawa, Japan.

[6] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003). A Symbolic Representation of Time Series, with

Implications for Streaming Algorithms. In proceedings of the 8th ACM SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0

B I D M C C o n g e s t i v e H e a r t F a i l u r e D a t a b a s e : R e c o r d 1 5

r

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0

B I D M C C o n g e s t i v e H e a r t F a i l u r e D a t a b a s e : R e c o r d 1 5

r

0 5000 10000 15000

MIT-BIH Arrhythmia Database: Record 108

r S r

1st Discord
2nd Discord

3rd Discord

0 5000 10000 15000

MIT-BIH Arrhythmia Database: Record 108

r S r

1st Discord
2nd Discord

3rd Discord

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05)

1063-7125/05 $20.00 © 2005 IEEE

