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Background

Learning for EDA

I Lithography hotspot detection [Yang et.al TCAD’2018]

…

HS

Non-HS

I Mask optimization [Yang et.al DAC’2018]

Litho-
SimulatorGenerator

More Considerations

I Existing attempts still rely on regular format of data, like images;

I Netlists and layouts are naturally represented as graphs;

I Few DL solutions for graph-based problems in EDA.

Test Points Insertion

I Fig. (a): Original circuit. Module 1 is unobservable. Module 2 is
uncontrollable;

I Fig. (b): Insert test points to the circuit;

I (CP1, CP2) = (0, 1) → line I = 0; (CP1, CP2) = (1, 1) → line I = 1;

I CP2 = 0 → normal operation mode.
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Problem Overview

I Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
- Focus on observation points insertion in this project.

I It is a binary classification problem from the perspective of DL model;

I A classifier can be trained from the historical data;

I Need to handle graph-structured data;

I Strong scalability is required for realistic designs.

Node Classification

Fundamental framework;
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I Represent a netlist as a directed graph. Each node represents a gate.

I Initial node attributes: SCOAP values [Goldstein et. al DAC’1980].

I Compute node embeddings first, then perform classification.

Node embedding: two-step operation

I Neighborhood feature aggregation: weighted sum of the neighborhood
features.

g (v)
d = e(v)

d−1 + wpr ×
∑

u∈PR(v)

e(u)
d−1 + wsu ×

∑
u∈SU(v)

e(u)
d−1

I Projection: a non-linear transformation to a higher dimension.

ed = σ(gd ·W d)

Classification

I A series of fully-connected layers

Node Embedding Computation

Require: Graph G(V , E); node attributes {x (v) : ∀v ∈ V}; Search depth
D; non-linear activation function σ(·); Weight matrices W d of en-
coders Ed , d = 1, ...,D;

Ensure: Embedding of for each node e(v)
D ,∀v ∈ V .

1: e(v)
0 ← x (v),∀v ∈ V ;

2: for d = 1, ...,D do
3: for all v ∈ V do
4: Compute g (v)

d ;

5: e(v)
d ← σ(W d · g

(v)
d );

6: end for
7: end for

Multi-stage Classification

Imbalance issue

I High imbalance ratio: much more negative nodes than positive nodes in
a design;

I Poor performance: bias towards majority class;

I Solution: multi-stage classification.

- Impose a large weight on positive points.
- Only filter out negative points with high confidence in each stage.
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Efficient Inference and Training

Inference

I Neighborhood overlap leads to duplicated computation → poor
scalability.

I Fact: adjacency matrix is highly sparse! It can be stored using
compressed format.

I Transform weighted summation to matrix multiplication.
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Gd = A · Ed−1 =

1 2 3 4 5 6



1 1 w1 w1 w1 0 0

2 w2 1 0 0 w1 0

3 w2 0 1 0 0 w2

4 w2 0 0 1 0 0

5 0 w2 0 0 1 0

6 0 0 w1 0 0 1

×




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d−1
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d−1

Training

I Adjacency matrix cannot be split as conventional way.

I A variant of conventional data-parallel scheme.

- Each GPU process one graph instead of one ”chunk”;
- Gather all to calculate the gradient.

Training data:
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Test Points Insertion Flow

OP Impact

I Not every difficult-to-observe node has the same impact for improving
the observability;

I Select the observation point locations with largest impact to minimize
the total count;

I Impact: The positive prediction reduction in a local neighborhood after
inserting an observation point.

- E.g., the impact of node a in the figure is 4.
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Iterative OPs Insertion Flow

I Iterative prediction and OPs insertion.

I Once an OP is inserted, the netlist would be modified and node
attributes would be re-calculated.

I Sparse representation enables incremental update on adjacency matrix.

I Exit condition: no positive predictions left.
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Experimental Results

Benchmarks

I 4 Industrial designs under 12nm technology node.

Design #Nodes #Edges #POS #NEG

B1 1384264 2102622 8894 1375370
B2 1456453 2182639 9755 1446698
B3 1416382 2137364 9043 1407338
B4 1397586 2124516 8978 1388608

Classification Results

I Comparison among different search depths.
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I Baselines: classical learning models with feature engineering applied in
industry;

I Single GCN outperforms other classical learning algorithms on balanced
datasets.
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Multi-stage Classification

I Classification: Single-stage GCN vs. Multi-stage GCN

- Significant improvement of classification performance on real designs;

I Scalability: Recursive computation vs. Matrix multiplication

- 103X speedup on inference time for a design with > 1 million cells.
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Testability Results Comparison

I Baseline: Conduct OPs insertion with a commercial industrial tool;

I Without loss on fault coverage, our flow achieves 11% reduction on test
points inserted and 6% reduction on test pattern count.
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