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Learning for EDA

Imbalance issue Benchmarks
» Lithography hotspot detection [Yang et.al TCAD'2018]
» High imbalance ratio: much more negative nodes than positive nodes in » 4 Industrial designs under 12nm technology node.
- - a design;
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- Only filter out negative points with high confidence in each stage.
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More Considerations . .
- CEfficient Inference and Training = S o0
» Existing attempts still rely on regular format of data, like images; - -
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» Netlists and layouts are naturally represented as graphs; Inference T 30 T 80
» Few DL solutions for graph-based problems in EDA. S O
» Neighborhood overlap leads to duplicated computation — poor < 75 < 79
Test Points Insertion scalability 0 50 100 150 200 250 300 0 50 100 150 200 250 300
» Fact: adjacency matrix is highly sparse! It can be stored using Eooch Eooch
» Fig. (a): Original circuit. Module 1 is unobservable. Module 2 is compressed format. POLNS POENS
uncontrollable; » Transform weighted summation to matrix multiplication.
» Fig. (b): Insert test points to the circuit; » Baselines: classical learning models with feature engineering applied in
» (CP1, CP2) = (0, 1) — line | = 0; (CP1, CP2) = (1, 1) — line | = 1; industry;
» CP2 = 0 — normal operation mode. 1 2 3 4 5 6 [o0] » Single GCN outperforms other classical learning algorithms on balanced
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_ S _ _ » Adjacency matrix cannot be split as conventional way. 3
> Gl\ll\c/eln a? n.etllit, :dentlfy where to insert test points, such that: » A variant of conventional data-parallel scheme. S
- IVlaximize tault coverage; , " "
5 - Each GPU process one graph instead of one "chunk”; 70 |

- Minimize the number of test points and test patterns.
- Focus on observation points insertion in this project.

. . Training data:
» It is a binary classification problem from the perspective of DL model; 9 %;leg Cgp@ﬁ

» A classifier can be trained from the historical data:

- Gather all to calculate the gradient.
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Benchmarks

» Need to handle graph-structured data;

» Strong scalability is required for realistic designs.

<Gl radlent> Multi-stage Classification

» Classification: Single-stage GCN vs. Multi-stage GCN

— - Significant improvement of classification performance on real designs:
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» Scalability: Recursive computation vs. Matrix multiplication

Fundamental framework;
- 103X speedup on inference time for a design with > 1 million cells.
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» Not every difficult-to-observe node has the same impact for improving - _qg) 102 |
the observability; A 4“:3
_ _ » Select the observation point locations with largest impact to minimize o ) 109 | |
» Represent a netlist as a directed graph. Each node represents a gate. the total count: ks
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> Initial node attributes. _SCOA_‘P values [Goldstein et.. .aI D_AC 1980]; » Impact: The positive prediction reduction in a local neighborhood after L e —
» Compute node embeddings first, then perform classification. inserting an observation point. Bl B2 B3 B4 103 104 10° 106
Node embedding: two-step operation - E.g., the impact of node a in the figure is 4. Benchmark Number of nodes
» Neighborhood feature aggregation: weighted sum of the neighborhood © Predicted-0 Q. O Testability Results Comparison
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(v) (v) (v) (u) .::./'e\A .::./'eQ’ » Baseline: Conduct OPs insertion with a commercial industrial tool;
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» Without loss on fault coverage, our flow achieves 11% reduction on test
points inserted and 6% reduction on test pattern count.

» Projection: a non-linear transformation to a higher dimension. (c) (d)

eq = (g4 Wy) Iterative OPs Insertion Flow
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» lterative prediction and OPs insertion. 103 103
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» A series of fully-connected layers » Once an OP is inserted, the netlist would be modified and node >
attributes would be re-calculated.

Classification
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Node Embedding Computation » Sparse representation enables incremental update on adjacency matrix. s o
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