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The one-bit-matching conjecture for independent component analysis
(ICA) could be understood from different perspectives but is basically
stated as “all the sources can be separated as long as there is a one-to-
one same-sign-correspondence between the kurtosis signs of all source
probability density functions (pdf’s) and the kurtosis signs of all model
pdf’s” (Xu, Cheung, & Amari, 1998a). This conjecture has been widely
believed in the ICA community and implicitly supported by many ICA
studies, such as the Extended Infomax (Lee, Girolami, & Sejnowski, 1999)
and the soft switching algorithm (Welling & Weber, 2001). However, there
is no mathematical proof to con�rm the conjecture theoretically. In this
article, only skewness and kurtosis are considered, and such a mathemat-
ical proof is given under the assumption that the skewness of the model
densities vanishes. Moreover, empirical experiments are demonstrated on
the robustness of the conjecture as the vanishing skewness assumption
breaks. As a by-product, we also show that the kurtosis maximization cri-
terion (Moreau & Macchi, 1996) is actually a special case of the minimum
mutual information criterion for ICA.

1 Introduction

Independent component analysis (ICA) aims at blindly separating the in-
dependent sources s from their linear mixture x D As via

y D Wx; x 2 Rm; y 2 Rn; W 2 Rm£n: (1.1)

The recovered y is required to be as component-wise independent as pos-
sible where independence is de�ned as

q.y/ D
Qn

jD1q.y.j//: (1.2)
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This effort is supported by Tong, Inouye, and Liu (1993). They showed that
y recovers s up to constant scales and a permutation of components when
the components of y become component-wise independent and at most one
of them is gaussian. The problem is further formalized by Comon (1994)
under the name ICA.

Although ICA has been studied from different perspectives, such as the
minimum mutual information (MMI) (Bell & Sejnowski, 1995; Amari, Ci-
chocki, & Yang, 1996) and maximum likelihood (ML) (Cardoso, 1997), in the
case that W is invertible, all such approaches are equivalent to minimizing
the following cost function,

D D ¡H.y/ ¡
nX

iD1

Z
pW.yiI W/ log pi.yi/ dyi (1.3)

where

H.y/ D ¡
Z

p.y/ log p.y/ dy

is the entropy of y, pi.yi/ is the predetermined model probability density
function (pdf), and pW.yiI W/ is the distribution on y D Wx. However, with
each model pdf pi.yi/ pre�xed, this approach works only for the cases that
the components of y are either all subgaussians (Amari et al., 1996) or all
supergaussians (Bell & Sejnowski, 1995).

In the cases that sources of supergaussian and subgaussian coexist in a
unknown manner, each model pdf pi.yi/ is suggested to be a �exibly ad-
justable density that is learned together with W, with the help of either a
mixture of sigmoid functions that learns the cumulative distribution func-
tion (cdf) of each source (Xu, Yang, & Amari, 1996; Xu, Cheung, Yang, &
Amari, 1997) or a mixture of parametric pdf’s (Xu, 1997; Xu, Cheung, &
Amari, 1998b). A so-called learned parametric mixture–based ICA (LPM-
ICA) algorithm is derived, with successful results on the sources that can
be either subgaussian or supergaussian, as well as any combination of both
types (Xu et al., 1997, 1998b). The mixture model was also adopted for the
ICA algorithms by Pearlmutter and Parra (1996), although it did not ex-
plicitly target separating the mixed sub- and supergaussian sources. Later,
Attias (1999) also studied the mixture model-based ICA, which is regarded
as a noise-free degeneration of the independent factor analysis (IFA) model.

Interestingly it has also been found that a rough estimate of each source
pdf or cdf may be enough for source separation. For instance, a simple sig-
moid function such as tanh.x/ seems to work well on the supergaussian
sources (Bell & Sejnowski, 1995), and a mixture of only two or three gaus-
sians may be enough already (Xu, Cheung, & Amari, 1998a; Xu et al.,
1998b) for the mixed sub- and supergaussian sources. This leads to the
so-called one-bit-matching conjecture (Xu et al., 1998a), which states that
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“all the sources can be separated as long as there is a one-to-one same-
sign-correspondence between the kurtosis signs of all source pdf’s and the
kurtosis signs of all model pdf’s.” In recent years, this conjecture has also
been implicitly supported by several other ICA studies (Girolami, 1998; Ev-
erson & Roberts, 1999; Lee, Girolami, & Sejnowski, 1999; Welling & Weber,
2001).

Although the one-bit-conjecture was widely accepted in the ICA com-
munity, there is no theoretical proof for it. In literature, a mathematical proof
(Cheung & Xu, 2000) was given for the case involving only two subgaussian
sources, but the result cannot be extended to a model with more than two
sources or with mixed sub- and supergaussian sources. Moreover, to guar-
antee a general adaptive ICA algorithm that is stable at the correct separation
points, the constraints for the nonlinear function ’i.yi/ D ¡ d

dyi
log pi.yi/ were

studied by Amari and Chen (1997), but it did not touch the circumstance
under which the sources can be separated.

When onlyskewness and kurtosis areunder consideration, this letter pro-
vides a mathematical proof on the one-bit-matching conjecture under the
assumption of zero skewness for the model pdf’s. The entire proof proceeds
in three stages. First, the observed mixture and recovered source signals be-
come prewhitened with zero mean and identity covariance matrix. Next,
an equivalence is established between minimization of the cost function
(1.3) and maximization of a weighted sum of matching scores between kur-
toses of source pdf’s and model pdf’s. Finally, we show that maximizing
the weighted sum will recover the sources up to a permutation and sign
indeterminacy. Meantime, as a by-product, we also show that the kurtosis
maximization (Moreau & Macchi, 1996)–based ICA can be taken as a special
case of the ICA based on equation 1.3.

The rest of the letter isorganized in the followingway. Section2 is devoted
to a detailed proof of the conjecture. Section 3 empirically demonstrates the
robustness of the conjecture against the vanishing skewness assumption for
the model pdf’s, and section 4 concludes the letter.

2 A Theorem on the One-Bit-Matching Conjecture

In this section, we prove the theorem on the one-bit-matching conjecture
according to the three stages described above.

Lemma 1. Assume the independent sources s, observed samples x, and the output
y are all prewhitened with zero mean and identity covariance matrix. We have

° m
i D

nX

jD1

r3
ij°

s
j (2.1)
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ºm
i D

nX

jD1

r4
ijº

s
j ; (2.2)

where ° m
i , º

y
i , ° s

j , and ºs
j denote the skewness and kurtosis of yi , and the skewness

and kurtosis of the source sj, respectively, and .rij/n£n is an orthonormal matrix.

Proof. Based on the prewhitened assumption, we have y D Wx D WAs
D Rs with

E.yyT/ D RE.ssT/RT ) RRT D I:

That is, R D .rij/n£n is an orthonormal matrix. Provided that s D [s1; s2; : : : ;

sn]T are component-wise independent with E.si/ D 0 and E.s2
i / D 1, we can

obtain

°
y
i D E

2

64

0

@
nX

jD1

rijsj

1

A
3
3

75 D
nX

jD1

r3
ijE.s3

j / D
nX

jD1

r3
ij°

s
j (2.3)

º
y
i D E.y4

i / ¡ 3 D E

2

64

0

@
nX

jD1

rijsj

1

A
4
3

75 ¡ 3

D
nX

jD1

r4
ijE.s4

j / C 6
n¡1X

jD1

nX

rDjC1

r2
ijr

2
ir ¡ 3

0

@
nX

jD1

r2
ij

1

A
2

D
nX

jD1

r4
ijE.s4

j / ¡ 3
nX

jD1

r4
ij D

nX

jD1

r4
ij.E.s4

j / ¡ 3/ D
nX

jD1

r4
ijº

s
j ; (2.4)

where
Pn

jD1 r2
ij D 1 due to the orthonormality of R, °

y
i and º

y
i , respectively,

denote the skewness and kurtosis of yi, which in practice are computed
based on the samples; and ° s

j and ºs
j denote the skewness and kurtosis of

the source sj, respectively.

Meanwhile, the orthonormalityof R further results in the entropy H.y/ D
H.s/ in equation 1.3 being a constant. Thus, minimizing 1.3 is equivalent to
maximizing

OD D
nX

iD1

Z
pW.yiI W/ log pi.yi/ dyi; (2.5)

where pW.yiI W/ is obtained via y D Rs. Based on the truncated Gram-
Charlier expansion (Stuart & Ord, 1994) up to kurtosis, we can then get the
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following approximation for pW.yiI W/,

pW.yiI W/ ¼ g.yi/

Á
1 C °

y
i

6
H3.yi/ C º

y
i

24
H4.yi/

!
; (2.6)

where g.yi/ denotes the standard gaussian distribution density as g.yi/ D
1p
2¼

exp.¡ y2
i
2 /, ° m

i and º
y
i are given by equations 2.3 and 2.4, respectively,

and the Chebyshev-Hermite polynomials H3.yi/ and H4.yi/ are de�ned as
follows:

H3.yi/ D y3
i ¡ 3yi (2.7)

H4.yi/ D y4
i ¡ 6y2

i C 3: (2.8)

We choose the Gram-Charlier expansion because it clearly shows how the
higher-order statistics affect the pdf and also the polynomials involved, that
is, H3.yi/ and H4.yi/, have an orthogonal property (Stuart & Ord, 1994).

Theorem 1. When only the skewness and kurtosis are under consideration and
when the skewness of the model pdf’s is zero,

1. Maximizing equation 2.5 is equivalent to maximizing

nX

iD1

nX

jD1

r4
ijº

s
j km

i (2.9)

where km
i is de�ned as

km
i D

Z
g.yi/

H4.yi/

24
log

³
1 C ºm

i

24
H4.yi/

´
dyi:

2. km
i is a constant that possesses the same sign as ºm

i .

Proof. Taking a zero skewness, the pre�xed model pdf pi.yi/ in equa-
tion 2.5 can be approximated by the following truncated Gram-Charlier
expansion,

pi.yi/ ¼ g.yi/

³
1 C ºm

i

24
H4.yi/

´
(2.10)

where ºm
i denotes the kurtosis of pi.yi/.
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Putting equations 2.10 and 2.6 into 2.5, maximizes the following cost
function,

J.R/ D
nX

iD1

Z
g.yi/

Á
1 C

°
y
j

6
H3.yi/ C º

y
i

24
H4.yi/

!

£ log
³

g.yi/

³
1 C ºm

i

24
H4.yi/

´´
dyi

D
nX

iD1

Z
g.yi/

Á
1 C

°
y
j

6
H3.yi/ C º

y
i

24
H4.yi/

!
log

³
1 C ºm

i

24
H4.yi/

´
dyi

¡ n
2

.1 C log 2¼/

D
nX

iD1

Z
g.yi/

º
y
i

24
H4.yi/ log

³
1 C ºm

i

24
H4.yi/

´
dyi

C
nX

iD1

Z
g.yi/

°
y
i

6
H3.yi/ log

³
1 C ºm

i

24
H4.yi/

´
dyi

C
nX

iD1

Z
g.yi/ log

³
1 C ºm

i

24
H4.yi/

´
dyi ¡ n

2

¡
1 C log 2¼

¢

D
nX

iD1

º
y
i

Z
g.yi/

H4.yi/

24
log

³
1 C ºm

i

24
H4.yi/

´
dyi

C C ¡ n
2

.1 C log 2¼/; (2.11)

where, because the term

nX

iD1

Z
g.yi/

°
y
i

6
H3.yi/ log

³
1 C ºm

i

24
H4.yi/

´
dyi D 0;

and since the parameter under consideration is º
y
i D

Pn
jD1 r4

ijº
s
j , the term

nX

iD1

Z
g.yi/ log

³
1 C ºm

i

24
H4.yi/

´
dyi

can be treated as a constant C with respect to R. Thus, the problem is further
simpli�ed as maximizing the following cost function OJ.R/,

OJ.R/ D
nX

iD1

º
y
i

Z
g.yi/

H4.yi/

24
log

³
1 C ºm

i

24
H4.yi/

´
dyi
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D
nX

iD1

nX

jD1

r4
ijº

s
j

Z
g.yi/

H4.yi/

24
log

³
1 C ºm

i

24
H4.yi/

´
dyi

D
nX

iD1

nX

jD1

r4
ijk

m
i ºs

j ; (2.12)

where

km
i ,

Z
g.yi/

H4.yi/

24
log

³
1 C ºm

i

24
.H4.yi//

´
dyi: (2.13)

Note the three terms g.yi/;
H4.yi/

24 and log.1 C ºm
i

24 H4.yi// involved in the
integration in equation 2.13. The �rst standard gaussian g.yi/ > 0. For the
last two terms, their product has the same sign as that of ºm

i whenever
H4.yi/ > 0 or < 0. Thus, the sign of the product of the three terms is always
the same as ºm

i (except for the four isolated points of yi that cause the product
zero), and this then makes the constant km

i have the same sign as ºm
i .

As a by-product, theorem 1 also reveals that the conventional kurtosis
maximization criterion can be taken as a special case of the MMI criterion
given by equation 1.3. As shown in equation 2.12, by setting ºm

1 D ºm
2 D

¢ ¢ ¢ D ºm
n D ºm, which implies that km

1 D km
2 D ¢ ¢ ¢ D km

n D km, we have

OJ.R/ D
nX

iD1

nX

jD1

r4
ijk

m
i ºs

j D km
nX

iD1

nX

jD1

r4
ijº

s
j D km

nX

iD1

º
y
i : (2.14)

This is exactly the kurtosis maximization criterion (Moreau & Macchi, 1996)
by setting either km as 1 for supergaussian sources or ¡1 for subgaussian
sources. Such a linkage was also observed by Cardoso (1999) under the
following much stricter condition:

log
³

1 C ºm
i

24
H4.yi/

´
¼ ºm

i

24
H4.yi/:

So far we have shown that the objective function 2.9 is equivalent to equa-
tion 2.5 when only the skewness and kurtosis are under consideration and
the model skewness vanishes. Then we proceed to prove that maximizing
equation 2.9 recovers the sources up to permutation and sign indeterminacy.
The result is summarized by the following one-bit-matching theorem.

Theorem 2. When only the skewness and kurtosis are under consideration and
when the model skewness vanishes, all the sources can be separated as long as there is
a one-to-one same-sign-correspondence between the kurtosis signs of all source pdf’s
and the kurtosis signs of all model pdf’s. That is, maximization of equation 2.9 can
be reachable only by an identity matrix up to permutation and sign indeterminacy.
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Proof. Let Rn£n D [r1; : : : ; rn]T with ri D [ri1; : : : ; rin] be an orthonormal
matrix, the objective (2.9) can be rewritten as follow,

max OJ.R/ s.t. RTR D I

OJ.R/ D
nX

iD1

OJ.ri/; OJ.ri/ D km
i

nX

jD1

r4
i1ºs

j (2.15)

Consider an ordering .i1; : : : ; in/ that is any permutation of .1; : : : ; n/, and
consider the constraint c D fcij gn

jD1,where cij D frij is orthogonal to Wij ; Wij D
[ri1 ; : : : ; rij¡1 ]

T; krij k2 D 1g . j D 1; : : : ; n/ with ci1 degenerated to kri1k2 D 1.
There are totally n! such constraints that are jointly equivalent to the or-
thonormality constraint RTR D I. Thus, the maximization of OJ.R/ under the
orthonormality constraint is equivalent to the maximization of OJ.R/ under
these n! constraints all together. Since the subscript of km

i is the same as ri
in (2.15), the problem is equivalent to consider the n! orderings k 2 K of
fkm

i gn
iD1 under the �xed ordering of fcign

iD1. Thus, we have,

max
s.t. RTRDI

f OJ.R/g D max
k2K

(
nX

iD1

max
s.t. ci

n
OJ.ri/

o)
(2.16)

where, for each k 2 K , the maximization is implemented sequentially from
the �rst term to the last term in f

Pn
iD1 maxs.t. ci

f OJ.ri/gg.
For every k, under the one-bit-matching condition, there is at least one

ºs
j .1 · j · n/ that possesses the same sign as km

1 . Since
Pn

jD1 r2
1j D 1,

maxf OJ.r1/g D km
1 ºs

l.1/ is reached at ri D [0; : : : ; ril.1/ ; : : : ; 0] with ril.1/ D §1,
where l.1/ D max

i
fºs

i gn
iD1 if km

1 > 0; otherwise, l.1/ D min
i

fºs
i gn

iD1 if km
1 < 0.

Then, under the constraints of
Pn

jD1 r2
2 j D 1 and r2 ? r1 that implies r2l.1/ D 0,

maxf OJ.r2/g D km
2 ºs

l.2/ , where l.2/ D max
i6Dl.1/

fºs
i gn

iD1 if km
2 > 0; otherwise, l.2/ D

min
i6Dl.1/

fºs
i gn

iD1 if km
1 < 0. The one-bit-matching condition can guarantee that

the above process can be sequentially proceeded until we get maxf OJ.rn/g D
km

n ºs
l.n/ . As a result,

Pn
iD1 max

s.t. ci

f OJ.ri/g D OJ.5k/ D
Pn

iD1 km
i ºs

l.i/ , where 5k is a

permutation matrix. Moreover, considering all the orderings in K , we can
�nally reach a set f5kgk2 K of at most n! permutation matrices.

We further �nd one 5 such that OJ.5/ D max
k2 K

f OJ.5k/g, for which we show

5 D I that corresponds to the particular ordering of km
1 > ¢ ¢ ¢ > km

n and
ºs

1 > ¢ ¢ ¢ > ºs
n. Such an ordering has the following nature,

km
i ºs

i C km
j ºs

q ¡ km
i ºs

q ¡ ks
j º

s
i D .km

i ¡ km
j /.º s

i ¡ ºs
q/ > 0 for j; q > i (2.17)

Now consider any 5 D .¼ij/n£n 2 f5kgk2K ; 5 6D I. If ¼ 4
11 D 1, we directly go

to consider ¼22; otherwise, there must exist ¼ 4
1 j D 1 and ¼ 4

i1 D 1 for i; j > 1.
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We modify 5 to 5.1/ by letting ¼
.1/
11 D 1; ¼

.1/
ij D 1; ¼

.1/
i1 D 0; ¼

.1/
1 j D 0 such

that OJ.5/ < OJ.5.1// due to (2.17). Continuing the same process, we get that
OJ.5/ < OJ.5.1// < ¢ ¢ ¢ < OJ.5.n// with 5.n/ D I.

In a summary, for any orthonormal matrix R 6D I we can conclude that
OJ.R/ < OJ.I/. In a special case as, for instance, km

i D km
iC1, the maximization

of OJ.R/ can be also reached by the permutation matrix 5̂ that is obtained
by switching the ith and .i C 1/th row of I. Similarly, when there are more
two km

i equal to each other, the maximization of OJ.R/ can be also reached by
the permutation matrix obtained by switching the corresponding rows. In
other words, the maximization of OJ.R/ is also reachable by such permutation
matrices in these special cases.

Remark 1. In the proof above it can be observed that the one-bit-matching
condition takes a key role. Without it, we cannot always ensure that there
is a ºs

qi
that possesses the same sign as km

i , and thus maximization of OJ.ri/

cannot cause the ri take the form [0; : : : ; §1; : : : ; 0].

For example, as km
1 D 3; km

2 D 2; km
3 D ¡1 and ºs

1 D 1; ºs
2 D ¡4; ºs

3 D ¡5,

the maximum of (2.9) is 5
3 obtained by setting .r4

ij/n£n D

0

@
4=9 1=9 0
1=9 4=9 0
0 0 1

1

A

instead of a permutation matrix.

Remark 2. The proof above consists of a continuous optimization that
leads to one permutation matrix and a combinatorial optimization that
reaches OJ.I/. Actually, any permutation matrix already corresponds to a
separable solution for ICA. This also means that a local maximization of
OJ.R/ that leads to a permutation can provide a successful solution for ICA
already. In fact, it explains the success of the gradient-based algorithms for
a continuous optimization such as the natural gradient algorithm (Amari et
al. 1996).

3 An Empirical Study on the Conjecture with Nonvanishing Model
Skewness

The one-bit-matching theorem is proved under the assumption that the
model skewness vanishes. Although the assumption is quite weak in reality
(for instance, any symmetric pdf satis�es the assumption of zero skewness),
it is still interesting to study the case when the assumption of zero model
skewness is not satis�ed. We give some empirical evidence for it based on
two experiments.
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3.1 On Demonstrating the Case with Small Model Skewness. This
experiment aims to demonstrate the case as the model densities with small
skewness are chosen. The experiment is based on a two-source model, with
the 50,000 source samples si generated by the following pdf approximation,

p.s/ D g.s/
³

1 C ° s

6
H3.s/ C ºs

24
H4.s/

´
(3.1)

where ° s and ºs denote the skewness and kurtosis, respectively. The ob-
served samples x are mixed from s by the rotation matrix

A D
³

cos.» / ¡ sin.» /

sin.» / cos.» /

´

with » D ¼=6 as follows,

x D As: (3.2)

Based on the output y obtained by a rotation of x via

y D Wx D
³

cos.Á/ ¡ sin.Á/

sin.Á/ cos.Á/

´
x; (3.3)

objective 2.5 can be empirically obtained as follows,

Á D arg max
Á

OD.Á/; OD.Á/ D
1

50000

2X

iD1

50000X

tD1

log pi.yi.t//; (3.4)

where the model pdf pi.yi.t// is constrained in the approximate form

p.y/ D g.y/

³
1 C ° m

6
H3.y/ C ºm

24
H4.y/

´
; (3.5)

with ° y and ºy denoting the skewness and kurtosis, respectively. Typically,
in the experiment, we demonstrate the following three cases:

Case 1: ° s
1 D ° s

2 D 0, and ° m
1 D 0:2, ° m

2 D ¡0:2

Case 2: ° s
1 D 0:2, ° s

2 D ¡0:2, and ° m
1 D ° m

2 D 0

Case 3: ° s
1 D 0:2, ° s

2 D ¡0:2, and ° m
1 D 0:2, ° m

2 D ¡0:2

Actually, the proved theorem includes case 2, which we use here for com-
parison. Meanwhile, in all cases we �x ºs

1 D ºm
1 D 0:5 and ºs

2 D ºm
2 D 1.

The OD.Á/ versus the Á 2 [0; 2¼] obtained for the three cases are shown
in Figures 1, 2, and 3, respectively.
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0 1 2 3 4 5 6 7
­ 2.87

­ 2.86

­ 2.85

­ 2.84

­ 2.83

­ 2.82

­ 2.81

­ 2.8

f

D

g
1
s= g

2
s=0, g

1
m=0.2, g

2
m=­ 0.2 

~5p/6 ~11p/6 

Figure 1: OD vs. µ for case 1.

From the experiment results, we see that the obtained Á’s corresponding
to the maximized OD in all three cases are around 5¼=6 or 11¼=6, which
then makes the rotation matrix R D WA approximately equal to ¡I2 or I2,
respectively. That is, all of the three settings recovered the original two
sources up to sign indeterminacy, even when the model pdf’s are with a
small nonzero skewness, as in cases 1 and 3.

3.2 On Demonstrating the Breakpoint of the Conjecture. We proceed
to demonstrate the conjecture by gradually increasing the skewness of the
model densities to get empirical evidence regarding to what extent the con-
jecture holds or breaks down in practice. In this experiment, the 50,000
source samples of s1 and s2 are generated by the following mixture of two
gaussians,

p.y j µ/ D 0:5G.y j µ; .2 ¡ µ/2/ C 0:5G.y j ¡µ; 1/; 0 · µ · 1; (3.6)

with µ1 D 0:1 and µ2 D 0:9, respectively, where G.y j m; ¾ 2/ denotes a
gaussian pdf with mean m and variance ¾ 2. By a standard technique (Stuart
& Ord, 1994), the skewness ° and kurtosis º of the mixture of k gaussians
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Figure 2: OD vs. µ for case 2.

can be obtained as follows,

° D ¹30 C 3¹12 C 2¹3
10 ¡ 3¹10¹02 ¡ 3¹10¹20

º D ¹40 C 6¹22 C 3¹04 C 12¹2
10¹02 C 12¹2

10¹20

¡ 12¹10¹12 ¡ 4¹10¹30 ¡ 3¹2
02 ¡ 3¹2

20 ¡ 6¹02¹20 ¡ 6¹4
10; (3.7)

where ¹pq ,
Pk

jD1 ®jm
p
j ¾

q
j . In our case, they become, respectively,

° D 1:5µ 3 ¡ 6µ 2 C 4:5µ; (3.8)

º D ¡1:25µ4 ¡ 6µ3 C 16:5µ2 ¡ 18µ C 6:75; (3.9)

with the change of ° and k as µ varies as shown in Figure 4. As a result, the
skewness ° and kurtosis º of the two sources are as follows,

° s
1 D 0:39; ºs

1 D 5:11; ° s
2 D 0:28; ºs

2 D ¡1:28:

That is, s1 is supergaussian and s2 is subgaussian. The observations x and
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Figure 3: OD vs. µ for case 3.

outputs y are obtained in the same way as in the previous experiment using
equations 3.2 and 3.3, respectively, but now with » D ¼

4 .
Meanwhile, the Á is also obtained using equation 3.4, and the two model

pdf’s p1.y1 j µ1/ and p2.y2 j µ2/ are still with the form given by equation 3.6
but with µ1 increased from 0 to 0:6 using

µ1 D 0:6¿; 0 · ¿ · 1; (3.10)

and µ2 decreased from 1 to 0:7 using

µ2 D 1 ¡ 0:3¿; 0 · ¿ · 1: (3.11)

In this way, p1.y1 j µ1/ is constrained as a supergaussian while p2.y2 j µ2/

remains always subgaussian, and meanwhile, the increase of ¿ will result
in the decrease of the kurtosis (absolute value) coupled with the increase of
the skewness for both p1 and p2, as illustrated in Figure 6.
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Figure 4: Skewness and kurtosis vs. µ

The performance of the recovery is measured by the following error
metric (Amari et al., 1996),

E D
dX

iD1

0

@
dX

jD1

jpijj
maxk jpikj

¡ 1

1

A C
dX

jD1

Á
dX

iD1

jpijj
maxk jpkjj

¡ 1

!
; (3.12)

where P , WA. The obtained error E versus ¿ is shown in Figure 5.
From Figure 5, we notice that the performance worsens as ¿ increases.

Typically, if we set the threshold as E D 0:40, which corresponds to the
matrix

P D WA D
³

0:9934 ¡0:1144
0:1144 0:9934

´
;

source separation by ICA via maximizing equation 1.3 would fail when
¿ > 0:89. This corresponds to

0:6 ¸ µ1 ¸ 0:53 and 0:7 · µ2 · 0:73

or

0:93 ¸ ° m
1 ¸ 0:86; 0:43 · ºm

1 · 0:85
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Figure 5: The obtained error E vs. ¿ .

and

0:73 ¸ ° m
2 ¸ 0:67; ¡0:12 ¸ ºm

2 ¸ ¡0:29;

as illustrated by Figure 6.
Apparently, small kurtosis coupled with large skewness poses a threat

to the one-bit-matching conjecture. An intuitive explanation for the break-
down of the conjecture in the experiment might be as follows. As the model
skewness becomes relatively big enough, it can no longer, even roughly,
guarantee that km

i in equation 2.9 possesses the same sign as ºm
i , and thus

make the one-bit-matching conjecture break down in practice.

4 Conclusions

When only skewness and kurtosis are under consideration, we have the-
oretically proved the so-called one-bit-matching conjecture for ICA under
the assumption of varnishing skewness for the model pdf’s. We also em-
pirically demonstrated the robustness of conjecture against the vanishing
skewness assumption for the model pdf’s and, as a by-product, showed
that the kurtosis maximization criterion is actually a special case of the
MMI criterion.
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Figure 6: Illustration of the ICA performance as the model pdf varies.
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