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Abstract 

This paper is concerned with the fixed-parameter tractability of the problem of deciding whether a graph can be made 
into a graph with a specified hereditary property by deleting at most i vertices, at most j edges, and adding at most k edges, 
where i, j, k are fixed integers. It is shown that this problem is fixed-parameter tractable whenever the hereditary property 
can be characterized by a finite set of forbidden induced subgraphs. Furthermore, the problem of deciding whether a graph 
can be made into a chordal graph by adding a fixed number k of edges is shown to be solvable in 0( 4’( k + 1) --3’2 (m + n) ) 

time, and is thus fixed-parameter tractable. 
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1. Introduction 

All graphs in this paper are finite undirected simple 

graphs. A graph property is a set II of graphs, and any 
graph in 17 is a II-graph. If for any graph G E IT ev- 
ery induced subgraph of G is also a I7-graph, then n 
is a hereditary property. A property 17 has a forbidden 
set characterization if there is a set F of graphs such . 

that a graph is a n-graph iff it does not contain any 
graph in F as an induced subgraph, and it has a$nite 

forbidden set characterization if F is a finite set. For 
a property I7, the general IT-graph modificationprob- l 

lem is to modify a graph G into a n-graph by adding 
and deleting edges and vertices. For such a graph mod- 

ification problem, one is primarily concerned with the 
number of edges and vertices involved in the modifi- 
cation process. Typical examples of the Z7-graph mod- 
ification problem include the following well-studied 
optimization problems in the literature [ 8,10,11,15] : 

The edge deletion problem, or equivalently, the 
maximum spanning subgraph problem: Find a set 
of edges of minimum cardinality in G whose dele- 
tion results in a n-graph. 
The vertex deletion problem, or equivalently, the 
maximum induced subgraph problem: Find a set of 
vertices of minimum cardinality in G whose dele- 

tion results in a n-graph. 
The edge and vertex deletion problem, or equiva- 
lently, the maximumpartial subgraphproblem: Find 
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a set of edges and vertices of minimum cardinality 
in G whose deletion results in a n-graph. 

l The edge additionproblem, or equivalently, the min- 
imum spanning supergraph problem (also called 

graph augmentation problem or graph completion 
problem in the literature): Find a set of new edges 
of minimum cardinality whose addition to G results 

in a n-graph. 
As one might imagine, the above problems are NP- 

hard in general. In fact, the first three problems are 
NP-hard for any nontrivial hereditary property n 

[8,10,11,15]. 
In this paper, we consider a fixed-parameter version 

of the n-graph modification problem for hereditary 

properties, namely, the following n( i, j, k) -graph 
modi$cation problem for fixed parameter (i, j, k), 
where EC is the set of edges in the complement of G: 

Given a graph G = (v E), find subsets V’ C_ V, 
E’ C_ E and E’ c E with IV’1 < i, (E’( < j and 

1 E” 1 < k such that the graph G - V’ - E’ + E* is 

a n-graph. 

When such subsets exist, G is called a IT(i, j, k)- 
graph, and the set V’ U E’ U E* is referred to as a 
modifier of G. Note that for any hereditary property 
17, a non-I7-graph cannot be made into a n-graph by 
vertex addition and thus there is no need to consider 
vertex addition for the n-graph modification problem 

when J7 is hereditary. 
The above fixed-parameter problem is trivially 

polynomial-time solvable by the exhaustive search 
method for any polynomial-time recognizable prop- 
erty ZI. On the other hand, the problem would be 
NP-hard for any nontrivial hereditary property 17 if 
the parameter (i, j, k) were a part of the input. In 
this paper we will use a framework developed by 
Downey and Fellows [4-61 for dealing with fixed- 
parameter problems to refine the complexity status 
of the L7(i, j, k)-graph modification problem. An al- 
gorithm for a fixed-parameter problem is uniformly 
polynomial if it runs in time O(na) for every fixed 
parameter value, where CY is a constant independent 
of the problem parameter and n is the size of the 
input. Note that the constant factor in the big-0 
notation can be an exponential function (or even 
worse) of the parameter. A fixed-parameter problem 
is jixed-parameter tractable if it admits a uniformly 
polynomial algorithm. This notion of fixed-parameter 

tractability attempts to distinguish tractable and in- 
tractable fixed-parameter problems, which is very 
akin to the notion of polynomial algorithms in distin- 

guishing tractable and intractable problems. Readers 
interested in the general background of the theory of 
fixed-parameter complexity are referred to [4-61 for 
details. 

In this paper, we show that the Z7( i, j, k)-graph 
modification problem is fixed-parameter tractable for 

any hereditary property 17 that has a finite forbidden 
set characterization. Furthermore, we prove that the 
problem of adding a fixed number k of new edges to a 
graph to make the graph a chordal graph (a graph in 

which any cycle of length greater than three contains 
a chord, i.e., an edge joining two non-consecutive ver- 

tices in the cycle) is also fixed-parameter tractable. 

Note that this problem is equivalent to the Z7( 0, 0, k)- 
graph modification problem with II being the set of 
chordal graphs. However, in this case, 17 does not have 
a finite forbidden set characterization. 

Throughout the paper, we use V(G) and E(G), 
respectively, to denote the vertex and edge sets of a 
graph G, and use m and n, respectively, to denote the 
number of edges and the number of vertices of the 
input graph. 

2. Properties with finite forbidden set 
characterizations 

We first notice that a property n is hereditary iff it 
has a forbidden set characterization. To verify this, we 
only need to observe that any property that has a for- 
bidden set characterization is clearly hereditary, and 
that for any hereditary property n, the induced sub- 
graph relation “a” defines a partial order among all 
graphs not in ZS7 and the set of minimal elements in this 

poset forms the forbidden set F of n. Most interesting 
graph properties are hereditary and thus have forbid- 
den set characterizations. Furthermore, many heredi- 

tary properties, such as line graphs 11 I, cographs [ 31, 
and split graphs [ 71, admit finite forbidden set char- 
acterizations. 

Let n be a property that has a finite forbidden set 
characterization. Let Y be the maximum number of 
vertices among all graphs in its forbidden set F. Then, 
given a graph G on n vertices, one can easily deter- 
mine whether G is a Z7-graph in 0( n’) time by the ex- 
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haustive search method. Therefore for such a property 

U, the n( i, j, k)-graph modification problem can be 
solved in 0( nif2j+2k+u ) time by considering all pos- 
sible ways to delete 6 i vertices and < j edges, and 

add < k edges; and for each resulting graph check- 
ing whether the graph is a U-graph. Of course, such 
an algorithm is neither uniformly polynomial nor ef- 
ficient in practice. To obtain a uniformly polynomial- 
time algorithm, we use the finite set characterization 

of L’. The idea is to find a minimal forbidden induced 

subgraph H of 17 in G, and then destroy it by deleting 
edges and vertices, and adding edges. For this method 
to work, we need to find a minimal forbidden induced 

subgraph of 17 in G in uniformly polynomial time. 

Indeed, this can be done! 

Theorem 1. For any hereditary property I?, if IT is 
recognizable in time T( m, n) , then for any graph G 
that is not a IT-graph, a minimal forbidden induced 
subgraph of IZ in G can be found in O(nT(m, n)) 
time. 

Proof. Let A be a recognition algorithm for ZL7 that 
runs in time T(m, n). Then a call A(G) of A on G 
returns “true” if G is a n-graph; otherwise it returns 
“false”. We now give an algorithm that uses A as an 

oracle to find a minimal forbidden induced subgraph 
of L7 in G. The idea is to check, for each vertex u of 
G, whether G - u is a D-graph. If it is then u belongs 
to a minimal forbidden induced subgraph, else G - u 
must contain a minimal forbidden induced subgraph 
and thus we proceed to consider G - v in the same 
manner. The following pseudocode describes the algo- 
rithm, where F is used to collect vertices of a minimal 
forbidden induced subgraph: 

F := 8; 
V := V(G); 
while V # 8 do 

Arbitrarily choose a vertex u E V; 
v := v - {u}; 
if A(G - u) 
then F := F U {u} 

else G := G - u; 

end while 

Theorem 2. The I7( i, j, k) -graph modificationprob- 
lem is fixed-parameter tractable for any heredi- 
tary property II that admits a finite forbidden set 
characterization. 

Proof. To solve the ZZ(i, j, k)-graph modification 
problem, we repeat the following two steps until we 
either get a n-graph or have used up the deletion of 
6 i vertices and < j edges, and the addition of 6 k 

edges. In the former case, G is a n( i, j, k)-graph; 
otherwise it is not. 

Step 1. Find a minimal forbidden induced subgraph 
H of n in G. 

Step 2. Modify G by either deleting an edge or a 
vertex from H, or adding an edge to H. 

The correctness of the algorithm is obvious. When 

G is a n( i, j, k)-graph, a modifier of G can be eas- 
ily obtained by comparing the resulting graph with 
the original graph. We now estimate the complexity of 
the algorithm. As noted earlier, 17 is recognizable in 
0( n’) time. Therefore, a minimal forbidden induced 
subgraph of 17 in G can be found in 0( nY+’ ) time (by 
Theorem 1). Since Y is the maximum number of ver- 
tices in any minimal forbidden induced subgraph of Ll, 
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there are at most (;) different ways to add an edge to 
or delete an edge from H, and at most v different ways 
to delete a vertex from H. This implies that the total 

number of graphs generated in the above procedure is 

at most (i)lfkyi = O(~~+xi+*~). Therefore the over- 

all running time of the algorithm is O(V~~*~~+*~F?‘+~), 
and thus the algorithm is uniformly polynomial since 
V, i, j and k are constants independent of m and n. 0 

3. Chordalization with k edges 

Recall that a chordal graph is a graph in which any 
cycle of length greater than three contains a chord, i.e., 
an edge joining two non-consecutive vertices in the 

cycle. The chordalization problem (also known as the 
minimum Jill-in problem and chordal graph comple- 
tion problem) asks for a minimum number of edges 

whose addition to a given graph makes the graph a 
chordal graph. This problem corresponds to the prob- 
lem of minimizing “fill-in” when applying Gaussian 

elimination to symmetric matrices (see [ 121)) and is 
known to be NP-hard [ 161. Here, we consider the fol- 
lowing fixed-parameter version of the chordalization 

problem, the k-chordalization problem: 

Given a graph G, find a set E* of at most k new 
edges, where k is a fixed integer, so that the graph 
G + E* is a chordal graph. 

When such a set E* exists, the resulting graph G + 
E” is called a k-chordalization of G. 

Let us refer to any chordless cycle on more than 
three vertices as a hole. Then from the definition of 
a chordal graph, it is clear that a graph is chordal 
iff it does not contain any hole as an induced sub- 
graph. So if we take 17 to be the set of all chordal 

graphs, then 17 is clearly a hereditary property and the 
k-chordalization problem is exactly the n( 0, 0, k)- 
graph modification problem. However, the general re- 
sult in the previous section does not apply since 17’s 
forbidden set F = {H ( H is a is set 
in this case. Nevertheless, we will show in this section 
that the k-chordalization problem is fixed-parameter 
tractable; in fact, the problem is solvable in linear time. 

From the definition of a chordal graph, we see that 
to k-chordalize a graph G it suffices to destroy all 
holes in G by adding at most k edges. For a hole H 
with h vertices, there could be s2 ( h2k) possible ways 

to destroy H by adding at most k edges. Therefore if 
we destroy holes by trying all possible ways for each 
hole, the running time could be a( n2k (m + n) ) in the 

worst case, which is not uniformly polynomial. In or- 
der to obtain a uniformly polynomial-time algorithm, 

we explore the structure of chordal graphs. 
First we fix some definitions. A spanning cycle of 

a graph is a hamiltonian cycle, and any graph that ad- 
mits a hamiltonian cycle is a hamiltonian graph. A 

graph is an outerplanar graph if it can be embedded 
in the plane so that no two edges cross each other and 
all vertices lie on the same face (we usually choose 
this face to be the exterior face), and it is maximal 
outerplanar if no edge can be added without losing 
outerplanarity. For simplicity, we refer to a maximal 

outerplanar graph as a mop. Note that a mop is a 
chordal graph. The following property of a hamilto- 
nian chordal graph will be useful in designing a uni- 
formly polynomial-time algorithm. 

Lemma 3. Let G be a hamiltonian chordal graph. 
Then for any hamiltonian cycle C of G, there is a 
spanning mop of G that contains C. 

Proof. We use induction on the number of vertices of 
G. The only hamiltonian chordal graph with at most 
three vertices is a triangle and the theorem is clearly 
true in this case. Assume that the theorem is true for all 
hamiltonian chordal graphs with fewer than n vertices 

and let G be a hamiltonian chordal graph on n > 4 

vertices, 
Without loss of generality, we may assume that C = 

UlJUt . . . on-1 uo is a hamiltonian cycle of G. Since G is 
chordal and n 2 4, there is a chord Uiuj in G. Let Gt = 

GE{~ivUi+tt. . . ,uj}] and G2 = G[{U,i,uj+i,. . . ,Ui}] 
(indices are taken module n). Then Ct = Uiui+t . . . UjU; 
and C2 = Ujuj+t . . . uiuj are hamiltonian cycles of Gt 

and G:! respectively. Therefore both Gt and G2 are 
hamiltonian chordal graphs. By the induction hypoth- 
esis, there is a spanning mop Ml of Gt that contains 
Ct, and a spanning mop M2 of G2 that contains C2. 
Each of Ml and M2 admits an outerplanar embedding 
with its vertices lying on the exterior face. Let M = 
Mt U M2. Then we can merge the above two outer- 
planar embeddings of Ml and MZ by identifying edge 
UiUj to get an outerplanar embedding of M since Uiuj 
is the only edge shared by MI and M2. Therefore M 
is a spanning mop of G that contains C. 0 
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Chordalization( G, k) ; 

Input: A graph G and a positive integer k; 
Our/w: A chordal graph G’ such that G’ is a 

supergraph of G and jE(G’) 1 - IE(G)I < k 

if such a G’ exists; othetwise return “No”; 

begin 
if G is a chordal graph 
then return G 
else 

begin 
Find a hole H in G; 
if k< IV(H)]-3 
then return “No” 
else for every mop H’ on V(H) do 

G’ :=G+ (E(H’) -E(H)); 
Chordalization(G’, k - ( jV( H) 1 - 3)) 

endfor 
endif 

endif 
end. 

Fig. 1. 

Lemma 3 can be used to reduce the k-chordalization 
problem to a k’-chordalization problem for some 

k’ < k. 

Lemma 4. Let H be a hole of a non-chordal graph G. 
Then G admits a k-chordalization #there exists a mop 
H’ on V(H) such that thegraph G’ = G+ (E(H’) - 
E( H) ) admits a (k - ( JV( H) ) - 3) > -chordalization. 

Proof. Suppose that G* is a (k - (JV( H)l - 3))- 
chordalization of G’. Then /E( H’)! - JE(H) 1 = 
lV( H) 1 - 3 since H’ is a mop on V(H) and any mop 
on n vertices contains 2n - 3 edges. Therefore G’ has 
exactly (V(H) 1 - 3 more edges than G, implying that 
G* is a k-chordalization of G. 

Conversely, suppose that G is a k-chordalization 
of G. Let fi = G[ V( H) 1. Then fi is a hamiltonian 

chordal graph and, by Lemma 3, contains a mop H’ 
on V(H) . Therefore H’ contains 21 V(H) j - 3 edges, 
and thus IE( H’)) - [E(H) I = (V(H) 1 - 3. Let G’ = 
G+ (E( H’) -E(H) ) . Then G’ is a subgraph of G’, and 

IE(G’)I - IE(G)I = ]E(H’)I - [E(H)\ = IV(H)] - 
3, which implies that G is a (k - ((V(H)1 - 3))- 
chordalization of G’. Cl 

In light of Lemma 4, we can k-chordalize a graph 
G by repeatedly finding a hole H in the graph and 
destroying it by adding edges to form all possible mops 

on V(H) until we either get a chordal graph or have 
used up k edges. A pseudocode of the algorithm is 

given in Fig. 1. 
The correctness of the algorithm follows from 

Lemma 4. Furthermore, a modifier of G can be ob- 
tained by subtracting the edges of G from the edges 
of its k-chordalization constructed by the algorithm. 

To show that the algorithm is uniformly polynomial, 
we first estimate the total number of graphs generated 
in the algorithm. It is well known that the number of 
distinct mops on a chordless cycle of h vertices equals 

the number of distinct triangulations of a convex poly- 
gon on h vertices, which equals the (h - 2) th Catalan 

number 

1 
C,,_2 = - 

2(h - 2) 

h-l ( > h-2 

(see, for example, [ 2, Chapter 16.41) . Let Mk denote 
the maximum number of graphs generated by the al- 
gorithm in k-chordalizing G. Let h denote the number 
of vertices in the hole H. Without loss of generality, 

we may assume k > h - 3. Then by Lemma 4, 

Mk = Mk_(l,_3) x # distinct mops on V(H) 

= Mk-(h-3)Ch-2. 

We will bound Mk by the (k + 1) th Catalan number. 

To do so, we need the following property of Catalan 

numbers: 

Lemma 5. For any integers i, j 3 0, Ci+l Ci+ I < 

Ci+j+l. 

Proof. Fix i and use induction on j. The inequality 
clearly holds for j = 0. Assume it holds for j. Then 

ci+(j+l)+l = 
2(i+j) +4. 2(i+j) +3Ci+i+i 

i+j+3 i+j+2 

( 2n + 2 
since CR+1 = - 

n-t2 

> 2j+4 2.i+3C, 
‘js3 

.- 
j + 2 ‘+.‘+I 

2n+lC 

Xi-” > 

(by the induction hypothesis) 

= Ci+l Cj+2- 

This establishes the inequality. 0 
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To show Mk < Ck+l, we use induction on k. The 
claim is true for k = 0 since MO = 1 and Cl = 1. 

Assume that the claim holds for k, then 

Mk+l = h’f (k+l)-(h-3)%2 

< Ck-h+&h-2 

(by the induction hypothesis) 

< C(k-h+4)+(h-3)+1 

(by Lemma 5) 

= ck+2 

Therefore the claim is true. 
We now estimate the complexity of the algorithm. 

First of all, a chordal graph can be recognized in lin- 
ear time [ 121 and furthermore a hole in a non-chordal 
graph can be found in linear time [ 141. As discussed 
earlier, the algorithm generates at most Ck+l differ- 

ent graphs. These graphs correspond to triangulations 
of convex polygons. It is well known that there is a 
one-to-one correspondence between a triangulation of 
a convex polygon and a full binary tree (see, for ex- 
ample, cite[ Chapter 16.4lcormen). Therefore these 

graphs can be generated in 0( Ckfl ) time since full 
binary trees can be generated in time proportional to 

the number of distinct full binary trees [ 131. There- 
fore the algorithm runs in 0( Ck+l (m + n) ) time. 
Since 

(see [ 2, Ex. 13-4, p. 262]), we obtain the follow- 
ing theorem, which implies that the k-chordalization 
problem is fixed-parameter tractable: 

Theorem 6. A k-chordalization of a graph, if il 
exists, can be found in 

time. 

Remark. After the submission of the paper, it was 
brought to the author’s attention by Michael R. Fel- 
lows that Kaplan, Shamir and Tarjan [9] have also 

independently proved the fixed-parameter tractability 
of the k-chordalization problem by using a similar 

method. However, they only obtained 0( 24k( m + n) ) 
as the time complexity of their algorithm. 
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