Exercises

Problem 1. Prove: every polygon (not necessarily convex) of n vertices can be triangulated into n-2 triangles. (Hint: induction.)

Problem 2. Let G be a polygon (not necessarily convex); denote by |G| the number of vertices in G. Suppose that we divide G into smaller polygons $G_1, G_2, ..., G_t$ for some $t \ge 1$ using non-intersecting diagonals. Prove: $\sum_{i=1}^{t} |G_i| = O(|G|)$.

Problem 3. Consider the following algorithm for triangulating a polygon G:

- 1. add diagonals to break G into non-overlapping polygons $G_1, G_2, ..., G_t$ without split vertices
- 2. for i = 1 to t do
- 3. add diagonals to break G_i into non-overlapping polygons without merge vertices
- 4. for every polygon G' obtained at Line 3 do
- 5. triangulate G' using a monotone algorithm

Prove: the above algorithm runs in $O(n \log n)$ time where n is the number of vertices in G.

Problem 4. Let G be an x-monotone polygon whose n edges are given in clockwise order. Describe an algorithm to sort the vertices of G by x-coordinate in O(n) time.

Problem 5 (Polygon Intersection). Let G_1 and G_2 be two convex polygons, whose edges are given in clockwise order. Describe an algorithm to compute the intersection of G_1 and G_2 in O(n) time, where n is the total number of edges in G_1 and G_2 . Note: the intersection is a polygon and you need to output its edges in clockwise order. (Hint: planesweep.)

Problem 6* (Point in Polygon) Let G be a convex polygon of n vertices, which are given in clockwise order. Given an arbitrary point q, describe an algorithm to decide whether q is inside or outside G in $O(\log n)$ time. (Hint: general binary search; see an earlier exercise.)