
CSCI 2100  Tutorial 9

CSCI 2100 Teaching Team, Fall 2021



Outline

• A review on binary heaps (priority queues)

• Regular exercise 8 problem 4

• Special exercise 8 problem 4



Binary Heap (Review)
Let S be a set of n integers. A binary heap on S is a 
binary tree T satisfying:
1. T is a complete binary tree.
2. Every node u in T stores a distinct integer in S, 
called the key of u.
3. If u is an internal node, the key of u is smaller than 
those of its child nodes.



Insertion

Swap up :
If node u has a smaller key than its 
parent p, swap the keys of u and p. 
Carry out this operation bottom up 

times. 

3

15

37 27

91 12

53 25

20

Insert 12 :
3

15

37 27

91 12

53 25

20

3

15

12 27

91 37

53 25

20

3

12

15 27

91 37

53 25

20



Delete-min

Swap down:
If a node u has a greater key than a 
child, then (i) identify the child v
with a smaller key and (ii) swap the 
keys of u and v. Carry out this 
operation top down times

3

15

37 27

91

53 25

20

91

15

37 27 53 25

20

15

91

37 27 53

20

15

27

37 91 53 25

20



Regular Exercise 8 Problem 4
Problem:
Suppose that we have k sorted arrays ,…, of 
integers. Let n be the total number of integers in those 
arrays. 

Describe an algorithm to produce an array that sorts 
all the n integers in time.



Solution 1: Merging

• Input
k = 8, n = 20

2 12 17 8 11 6 9 10 3 18 19

1 25 23 28 5 7 15 30 40

Merge 
2 8 11 12 17 3 6 9 10 18 19

1 23 25 28 5 7 15 30 40

Merge
2 3 6 8 9 10 11 12 17 18 19

1 5 7 15 23 25 28 30 40

8 arrays

4 arrays

2 arrays



Solution 1: Merge Operation
Merge

1 2 3 5 6 7 8 9 10 11 12 15 17 18 19 23 25 28 30 40

Need passes. Each pass takes time on n
integers (the cost of merging is proportional to the 
number of elements involved). 

Therefore, the total time complexity is .



Solution 2: Binary Heap

• Input:
k = 3, n = 15

• Output

2 15 30 40 47 5 8 11 12

279 14 21 26 37

11 12 37 40 472 5 8 9 2714 15 21 26 30



Solution 2: Binary Heap

Ideas:
• At all times, use a heap to store, for each array, the 

smallest element that has not been output.
• A binary heap of size k can perform delete-min and 

insertion in time.
• Perform a delete-min to obtain the next integer to 

output.
• After delete-min, insert a new integer into the heap 

from the integer’s origin array.



Solution 2: Binary Heap

2 15 30 40 47 5 8 11 12

279 14 21 26 37

2

9 5

2 15 30 40 47 5 8 11 12

279 14 21 26 37

5

9 15

2



Solution: Binary Heap

Initialization cost:
creating the output array: 

Processing cost:
n insertions: n delete-min:

Total time complexity:



Special Exercise 8 Problem 4
Problem:
Let S be a dynamic set of integers. At first, S is empty. 
Then, new integers are added to S one by one, but never 
deleted. Let k be a fixed integer. Describe an algorithm 
that achieves the following guarantees:

• Space consumption . 
• Insert(e): Insert a new element e into S in

time.
• Report-top-k: Report the set of k largest integers in S in 

O(k) time.



Special Exercise 8 Problem 4
Example:
Suppose that k = 3, and the sequence of integers 
inserted is 83, 21, 66, 5, 24, 76, 92, 33, 43,… 

After the insertion of 24, we should report 83, 66, 24 
(in any order). After the insertion of 76, report 83, 66, 
76.



Solution
Intuition:
• A min-heap H of size k takes space.
• H performs insertion and delete-min in
time.
• H always contains the k largest integers in S. 

• If the incoming integer m is larger than the root of H, 
perform delete-min and insert(m). Otherwise, we do 
nothing.



Solution

• Input:
83, 21, 66, 5, 24, 76, 92, 33, 43, …, and k=3

21

83 66

21

83 66
insert(5)

24

83 66
insert(24)

66

83 76
insert(76)

insert(92) ● ● ●



Solution
Maintain a binary heap H with k integers.
1. Insert first k integers into H. Each insertion takes 

time.
2. For a newly added integer e from the sequence, 

compare it with the integer stored at the root r
of H:
(1) If e > , perform delete-min and insert(e), which take 

time in total.
(2) Otherwise, ignore e.



Solution
Report-top-k: 
Report all integers in H by traversing the heap.

Traversal:
First report the root of H. Then report the left 
subtree and right subtree recursively. 

66

83 76
Output sequence: 66, 83, 76



Solution
Cost of traversing a tree of n nodes:

m nodes
n-1-m nodes

f(n) = O(1) + f(m) + f(n – 1 + m)

Solving the recurrence gives f(n) = O(n).



A challenging problem for you 

• For this problem, we can actually achieve
• O(k) space
• amortized insertion time
• O(k) top-k report time. 

• Hint: k-selection. 


