
CSCI2100 Tutorial 8

CSCI 2100 Teaching Team, Fall 2021

Review on Hash Table

• 𝑆 = a set of 𝑛 integers in [1, 𝑈]

• Main idea: divide 𝑆 into a number 𝑚 of disjoint
“buckets”

• Guarantees
• Space consumption: 𝑂 𝑛 +𝑚

• Preprocessing cost: 𝑂(𝑛 +𝑚)

• Query cost: 𝑂(1 + 𝑛/𝑚) in expectation

Review on Hash Table

• 𝑆 = a set of 𝑛 integers in [1, 𝑈]

• Main idea: divide 𝑆 into a number 𝑚 of disjoint
“buckets”

• Set 𝑚 = Θ(𝑛)

• Guarantees
• Space consumption: 𝑂 𝑛

• Preprocessing cost: 𝑂 𝑛

• Query cost: 𝑂(1) in expectation

Review on Hash Table

• Divide 𝑆 into a number 𝑚 of disjoint buckets:
• Choose a function ℎ from [1, 𝑈] to [1,𝑚]

• For each 𝑖 ∈ [1,𝑚], create an empty linked list 𝐿𝑖
• For each 𝑥 ∈ 𝑆:

• Compute ℎ(𝑥)

• Insert 𝑥 into 𝐿ℎ(𝑥)

• Important: choose a good hash function ℎ

Review on Hash Table

• Construct a universal family
• Pick a prime number p such that 𝑝 ≥ 𝑚 and 𝑝 ≥ 𝑈

• Choose an integer 𝛼 from [1, 𝑝 − 1] uniformly at
random

• Choose an integer 𝛽 from [0, 𝑝 − 1] uniformly at
random

• Define a hash function:
ℎ 𝑘 = 1 + 𝛼𝑘 + 𝛽 mod 𝑝 mod 𝑚

Example
• Let 𝑆 = {19,36,63,53,14,9,70,26}

• We choose 𝑚 = 10, 𝑝 = 71, suppose that 𝛼 and 𝛽 are randomly chosen
to be 3 and 7, respectively

• ℎ 𝑘 = 1 + (3𝑘 + 7 mod 71 mod 10)

Relationships between Hash Functions
and Queries

1 2 … 𝑈 Max

ℎ1 cost(ℎ1, 1) cost(ℎ1, 2) … cost(ℎ1, 𝑈) 𝑂(𝑛)

ℎ2 cost(ℎ2, 1) cost(ℎ2, 2) … cost(ℎ2, 𝑈) 𝑂(𝑛)

… … …. … …. 𝑂(𝑛)

ℎ 𝐻 cost(ℎ|𝐻|, 1) cost(ℎ|𝐻|, 2) … cost(ℎ|𝐻|, 𝑈) 𝑂(𝑛)

Average 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1)

• Let 𝐻 be the universal family defined in the previous slides

• Given a function ℎ ∈ 𝐻 and an integer q∈ 1,𝑈 :
• Define cost(ℎ, 𝑞) = | 𝑥 ∈ 𝑆 ℎ 𝑥 = ℎ(𝑞)}|

query value

Hash Table

• Worst-case expected query cost: 𝑂(1)

• Worst-case query cost: 𝑂(𝑛)

• Question:
• Can we improve the worst-case query cost?

Hash Table: Improving the Worst Cost

• Replace linked lists with sorted arrays

• 𝑂(𝑛 log 𝑛) preprocessing cost

NIL

𝐻

10 6 28 2 14 29 9 26

𝐻

2 6 9 10 14 26 28 29

NIL18

NIL24

18

24

Hash Table: Improving the Worst Cost

• Query: whether 29 exists

• Step 1:
• Access the hash table to obtain the address of

corresponding array
• 𝑂(1) time

𝐻

2 6 9 10 14 26 28 29

18

24

Hash Table: Improving the Worst Cost

• Query: whether 29 exists

• Step 2:
• Perform binary search on the array to find the target

• 𝑂(log 𝑛) time

• Overall worst-case complexity: 𝑂(log 𝑛)

𝐻

2 6 9 10 14 26 28 29

18

24

Hash Table: Improving the Worst Cost

• This method retains the 𝑂(1) worst-case expected
query time.

• Proof:
• Suppose we look up an integer 𝑞

• Define random variable 𝑋ℎ 𝑞 to be the length of array that
corresponds to the hash value ℎ 𝑞

• Expected query time:

E log2 𝑋ℎ 𝑞 =෍
𝑙=1

𝑛

log2 𝑙 Pr 𝑋ℎ 𝑞 = 𝑙

≤ σ𝑙=1
𝑛 𝑙 Pr 𝑋ℎ 𝑞 = 𝑙

= E 𝑋ℎ 𝑞

= 𝑂(1)

The Two-Sum Problem (Revisited)

• Problem Input:
• An array 𝐴 of 𝑛 distinct integers (not necessarily sorted).

• Goal:
• Determine whether if there exist two different integers 𝑥 and 𝑦 in A

satisfying 𝑥 + 𝑦 = 𝑣

• Example: find a pair whose sum is 20

11 3 17 7 2 13

Solution 1: Binary Search the Answer

• Goal: Find a pair (𝑥, 𝑦) such that 𝑥 + 𝑦 = 𝑣

• Observe that given x, 𝑦 = 𝑣 − 𝑥, is determined

• Solution:
• Sort A

• For each 𝑥 in A:

• set 𝑦 as 𝑣 − 𝑥

• Use binary search to see if 𝑦 exists in the sequence

• Time complexity: 𝑂(𝑛 log 𝑛)

Solution 2: Using the Hash Table

• Step 1 and 2:
• Choose a hash function ℎ and create an empty hash table 𝐻

• Insert each x in A into 𝐿ℎ 𝑥

• Step 3:

• For i = 1 to n

• Set 𝑦 as 𝑣 − 𝐴[𝑖]

• Check if 𝑦 is in the hash table; if it is, return yes

• Return no

Time Complexity

• Step 1 and 2: 𝑂(𝑛)

• Step 3:

• The step issues n queries (one for each y)

• Let 𝑋𝑖 be the time of the 𝑖-th query

• We know 𝐸[𝑋𝑖] = 𝑂(1)

• The worst-case expected cost of step 3 is σ𝑖𝐸 𝑋𝑖 = O 𝑛

• Overall: 𝑂 𝑛 in expectation

Bonus: Sorting by Frequency
(a Regular Exercise)

• Problem input:
• Let 𝑆 be a multi-set of 𝑛 integers. The frequency of an integer 𝑥 as

the number of occurrences of 𝑥 in 𝑆.

• Goal: Produce an array that sorts the distinct integers in 𝑆 by
frequency.

10 8 8 12 9 9 12 12

12 8 9 10

input:

output:

12 : 3 occurrences
8 : 2 occurrences
9 : 2 occurrences
10 : 1 occurrence

Using a Hash Table to Obtain Frequencies

𝐻

10 8 8 12 9 9 12 12

NIL

NIL

NIL

Using a Hash Table to Obtain Frequencies

𝐻

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

Using a Hash Table to Obtain Frequencies

𝐻

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

(8,1) NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

𝐻

(10,1) NIL

NIL

(8,2) NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

𝐻

(10,1) NIL

NIL

(8,2) NIL

(12,1)

Using a Hash Table to Obtain Frequencies

• The final state:

10 8 8 12 9 9 12 12

𝐻

(8,2)

(10,1)

(12,3)

(9,2)

NIL

NIL

NIL

Counting Sort!

• Now we sort the numbers by frequency.

• Key observation: each frequency is in [1, 𝑛].

• We can carry out the sorting with counting sort in 𝑂(𝑛) time.

12 8 9 10

Total time complexity: 𝑂(𝑛) expected time.

Counting sort

𝐻

(8,2)

(10,1)

(12,3)

(9,2)

NIL

NIL

NIL

