CSCI 2100 Tutorial 7

CSCl 2100 Teaching Team, Fall 2021

Outline

* Dynamic array vs. linked list
* Dynamic array: space and update cost tradeoff

* An application of the stack

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic
array guarantees O(1) insertion cost after
amortization.

However, a dynamic array provides constant-time
access to any position, which a linked list cannot
achieve.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set S
of n integers to satisfy the following requirements:

* Aninteger can be inserted in O(1) time.
* We can enumerate all integers in O(n) time.

Answer: Linked list.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set S
of n integers to satisfy the following requirements:

* An integer can be inserted in O(1) amortized time.
* We can enumerate all integers in O(n) time.

* For each j € |1, n],we can access the i-th inserted
integer in O(1) time.

Answer: Dynamic array

Outline

* Dynamic array vs. linked list
* Dynamic array: space and update cost tradeoff

* An application of the stack

Space-Update Tradeoff of the
Dynamic Array

In the lecture, we expand the array from size n to 2n
when it is full.

What if we expand the array size to 3n instead?

Space-Update Tradeoff of the
Dynamic Array

* Initially, size 3 (define s; = 3)
* 1st expansion: size from s; to s, = 3s; = 9.
« 2"d expansion: from s, to s; = 3s, = 27.

* j-th expansion: from s; to s;,; = 3s;.

We have s; = 3.

Space-Update Tradeoff of the
Dynamic Array

* The total cost of n insertions is bounded by:

n h
0(1)) + » 0(3"*Y) =0(n+3"1)
20)2

where h is the number of expansions.

It must hold that n = s5,, = 3" (the h-th expansion happened
because the array of size s; was full).

Hence, the total cost is O(n).

Space-Update Tradeoff of the
Dynamic Array

* Consider what happens in general. When the array
is full, expand its size from n to an, for some
constant a > 1.

Space-Update Tradeoff of the
Dynamic Array

* Initially, size 2 (define s; = 2)
e 1t expansion: size from s; to s, = [as,].

 2"d expansion: from s, to s; = [as,]|.

* j-th expansion: from s; to s;,; = |as;]..

i

)ands; = al.

a
We can prove: s; = 0(a -

Space-Update Tradeoff of the
Dynamic Array

The total cost of n |nsert|ons is bounded by:

(Z 0(1)> z 0 i) = (o iz)z)

where h is the number of expansions.

It must hold that n > s, = a'* (the h-th expansion happened
because the array of size s; was full).

2

(a—1)2

Hence, the total cost is O (n +

cost=0 (1 + (a_z)z)

n), namely, amortized

Space-Update Tradeoff of the
Dynamic Array

2
Amortized cost = 0 (1 + (ac_ll)z).

When «a increases, the space consumption goes up, but the
insertion cost goes down.

Outline

* Dynamic array vs. linked list
* Dynamic array: space and update cost tradeoff

* An application of the stack

Input: A sentence stored in a sequence of n cells. Each cell
contains a word or one of the following pairing characters:

”I ”I (I)I {I }I <I >

Please design an algorithm to determine whether the paring
characters have been matched correctly (in the way we are

used to in English).
The following input is a correct sentence:

”

| |say| “ | | |like| (|red|) |apple

while the one below is not:

| |say| “ | | |like| (|red|apple| ” |)

Your algorithm should finish in O(n) time.

Using a Stack

The key idea is to use a stack to check whether all the “ (| {, <
are closed properly. We will discuss the ideas on the following
two examples:

The Algorithm

Sequentially scan the input sentences.
At readinga “ (, <, or {, push it into the stack.

At readinga”,), >, or }, check whether the top of the stack
matches the character just read. If so, pop the stack and
continue; otherwise, report “incorrect”.

After reading all the cells, check whether the stack is empty. If
so, report “correct”; otherwise, report “incorrect”.

The running time is clearly O(n).

