
CSCI 2100 Tutorial 7

CSCI 2100 Teaching Team, Fall 2021

Outline

• Dynamic array vs. linked list

• Dynamic array: space and update cost tradeoff

• An application of the stack

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic
array guarantees O(1) insertion cost after
amortization.

However, a dynamic array provides constant-time
access to any position, which a linked list cannot
achieve.

Dynamic Array vs Linked List
Question:
Design a data structure of space to store a set S
of n integers to satisfy the following requirements:

• An integer can be inserted in time.
• We can enumerate all integers in time.

Answer: Linked list.

Dynamic Array vs Linked List
Question:
Design a data structure of space to store a set S
of n integers to satisfy the following requirements:
• An integer can be inserted in amortized time.
• We can enumerate all integers in time.
• For each i ,we can access the i-th inserted

integer in time.

Answer: Dynamic array

Outline

• Dynamic array vs. linked list

• Dynamic array: space and update cost tradeoff

• An application of the stack

Space-Update Tradeoff of the
Dynamic Array

In the lecture, we expand the array from size n to 2n
when it is full.

What if we expand the array size to instead?

Space-Update Tradeoff of the
Dynamic Array
• Initially, size (define)
• 1st expansion: size from to .
• 2nd expansion: from to .

…
• i-th expansion: from to .

We have .

Space-Update Tradeoff of the
Dynamic Array
• The total cost of n insertions is bounded by:

where h is the number of expansions.

It must hold that (the h-th expansion happened
because the array of size was full).

Hence, the total cost is O(n).

Space-Update Tradeoff of the
Dynamic Array

• Consider what happens in general. When the array
is full, expand its size from n to , for some
constant .

Space-Update Tradeoff of the
Dynamic Array
• Initially, size (define)
• 1st expansion: size from to .
• 2nd expansion: from to .

…
• i-th expansion: from to ..

We can prove:
೔

and .

Space-Update Tradeoff of the
Dynamic Array

The total cost of n insertions is bounded by:

where h is the number of expansions.

It must hold that (the h-th expansion happened
because the array of size was full).

Hence, the total cost is
మ

మ , namely, amortized

cost
మ

మ .

Space-Update Tradeoff of the
Dynamic Array

Amortized cost
మ

మ .

When increases, the space consumption goes up, but the
insertion cost goes down.

Outline

• Dynamic array vs. linked list

• Dynamic array: space and update cost tradeoff

• An application of the stack

Input: A sentence stored in a sequence of n cells. Each cell
contains a word or one of the following pairing characters:

“, ”, (,), {, }, <, >

Please design an algorithm to determine whether the paring
characters have been matched correctly (in the way we are
used to in English).
The following input is a correct sentence:

while the one below is not:
I say “ I like (red) apple ”

I say “ I like (red)apple ”

Your algorithm should finish in O(n) time.

Using a Stack
The key idea is to use a stack to check whether all the “, (, {, <
are closed properly. We will discuss the ideas on the following
two examples:

{ < < “ ” > () > }

{ < < “ { > () > }

The Algorithm
Sequentially scan the input sentences.
At reading a “, (, <, or {, push it into the stack.
At reading a ”,), >, or }, check whether the top of the stack
matches the character just read. If so, pop the stack and
continue; otherwise, report “incorrect”.
After reading all the cells, check whether the stack is empty. If
so, report “correct”; otherwise, report “incorrect”.
The running time is clearly O(n).

