Week 3 Tutorial

CSE Dept, CUHK

The Predecessor Search Problem

Problem Input

- An array A of n integers in ascending order
- A search value q

Goal:

Find the predecessor of q in A.

Remark: the predecessor of q is the largest element in A that is smaller than or equal to q.

Example

- 1. If q = 23, the predecessor is 21.
- 2. If q = 21, the predecessor is also 21.
- 3. If q = 1, no predecessor.

2	3	5	8	13	21	34	55		
A									

Binary Search

- If A contains q, binary search will find q directly.
- If A does not contain q, the predecessor of q can be easily inferred from where the algorithm terminates.

2	3	5	8	13	21	34	55		
A									

The Two-Sum Problem

Input

- A array of *n* integers in ascending order.
- An integer v.

Goal:

Determine whether A contains two different integers x and y such that x + y = v.

Example

- If v = 30, answer "yes".
- If v = 29, answer "no".

					l		l				
2	1 2	l –		111	1 1 2	17	110	22	าก	21	27
	1 3	5	/ /	1 1 1	I 13	1 1 /	1 19	23	1 29	1 3 L	13/
					1						

Solution

Use binary search as a building brick.

Key idea: For each x in the array, look for v - x with binary search.

Analysis

This algorithm performs at most n binary searches.

Cost of the algorithm: $O(n \log n)$

Can you do even better?

Try to solve this problem in O(n) time (not covered in this tutorial).

More on big-0

Recall the definition of f(n) = O(g(n)):

f(n) = O(g(n)), if there exist two positive constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ holds for all $n \ge c_2$.

Another approach is to compute $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ and decide as follows:

- f(n) = O(g(n)), if the limit is bounded by an constant;
- $f(n) \neq O(g(n))$, if the limit is ∞ .

Note: there is a third possibility for the limit, where the approach will fail. We will discuss this at the end of the tutorial.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Method 1: Constant finding

- Fix c₁
- ② Solve for c_2
- \bullet If a c_2 cannot be found, go back to Step 1 and try a different c_1 .

Let
$$f(n) = 10n + 5$$
 and $g(n) = n^2$. Prove $f(n) = O(g(n))$
(try $c_1 = 5$)

$$f(n) \le c_1 \cdot g(n)$$

$$\Leftrightarrow 10n + 5 \le c_1 \cdot n^2$$

$$\Leftrightarrow 5(2n + 1) \le 5 \cdot n^2$$

$$\Leftrightarrow 2n + 1 \le n^2$$

$$\Leftrightarrow 2 \le (n - 1)^2$$

$$\Leftrightarrow 3 \le n$$

Hence, it suffices to set $c_2 = 3$.

Let
$$f(n) = 10n + 5$$
 and $g(n) = n^2$. Prove $f(n) = O(g(n))$.

Method 2: Limit

$$\lim_{n \to \infty} \frac{10n + 5}{n^2} = \lim_{n \to \infty} \frac{10 + 5/n}{n} = 0.$$

Hence, f(n) = O(g(n)).

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 1: Constant finding (prove by contradiction)

Suppose that g(n) = O(f(n)), i.e., there are constants c_1, c_2 such that, for all $n \ge c_2$, we have

$$n^{2} \le c_{1} \cdot (10n + 5)$$

$$\Rightarrow n^{2} \le c_{1} \cdot 20n$$

$$\Leftrightarrow n \le 20c_{1}$$

which cannot hold for all $n \ge c_2$, regardless of c_2 . This gives a contradiction.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 2: Limit

$$\lim_{n\to\infty}\frac{n^2}{10n+5}=\infty.$$

Hence, $g(n) \neq O(f(n))$.

In some rare scenarios, the limit approach may fail. We will see an example next.

Consider $f(n) = 2^n$. Define g(n) as:

- $g(n) = 2^n$ if n is even;
- $g(n) = 2^{n-1}$ otherwise.

Since $f(n) \le 2g(n)$ holds for all $n \ge 1$, it holds that f(n) = O(g(n)).

However, $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ does not exist, because it keeps jumping between 1 and 2 as n increases!