# Connected Components and Dijkstra's Algorithm

CSCI 2100 Teaching Team, Fall 2021



#### Today's tutorial covers:

- find connected components using BFS and DFS.
- an example of Dijkstra's Algorithm.

### Connected Components

**Problem**: Let G = (V, E) be an undirected graph. Our goal is to compute all the connected components (CC) of G.

A CC of *G* includes a set  $S \subseteq V$  of vertices such that:

- (Connectivity) any two vertices in *S* are reachable from each other;
- (Maximality) not possible to add another vertex to *S* while still satisfying the above requirement.



Output:  $\{a, b, c, d, f\}, \{g, e\}, \{h, i, j, k\}$ 

# A Lemma on CCs

**Lemma:** Take an arbitrary vertex s. The CC of s is the set S of vertices in G reachable from s.

#### **Proof:**

- Connectivity: any two vertices in S can reach each other via s.
- Maximality: any vertex outside S is unreachable from s.



## A BFS Solution

- 1. Run BFS on G with a white source vertex
- 2. Output the vertex set of the BFS-tree
- 3. If there is still a white vertex in G, repeat from 1



## Proof of Correctness

**Claim**: The vertex set *S* of every BFS-tree is a CC of *G*.

**Proof**: Follows immediately because BFS finds all the vertices reachable from s.



### A DFS Solution

- 1. Run DFS on G with a white source vertex
- 2. Output the vertex set of the DFS-tree
- 3. If there is still a white vertex in G repeat from 1



## Proof of correctness

**Claim**: The vertex set *S* of each DFS-tree is a CC of *G*.

**Proof**: Let *s* be the source vertex of DFS. We will show that the DFS-tree contains all and only the vertices reachable from *s*.

Let v be a vertex reachable from s. At the beginning of DFS, there is a white path from s to v. By the white path theorem, v must be in the subtree of s, namely, in the DFS-tree.

It is obvious that every vertex in the DFS-tree is reachable from s.



# Dijkstra's Algorithm

The algorithm solves the single-source shortest-paths (SSSP) problem on a directed graph G = (V, E) with positive edge weights.

Suppose that the source vertex is a.



| vertex v | dist(v)  | parent(v) |
|----------|----------|-----------|
| а        | 0        | nil       |
| Ь        | $\infty$ | nil       |
| С        | $\infty$ | nil       |
| d        | $\infty$ | nil       |
| e        | $\infty$ | nil       |
| f        | $\infty$ | nil       |
| g        | $\infty$ | nil       |
| h        | $\infty$ | nil       |
| i        | $\infty$ | nil       |

$$F = \emptyset$$
 and

$$P = \{a, b, c, d, e, f, g, h, i\}.$$

Since dist(a) is the smallest among those of vertices in P, pick a.

Relax the out-going edges of a:



 $F = \{a\}$  (vertices finalized) and  $P = \{b, c, d, e, f, g, h, i\}$ . Relaxing the edge (a, b).

| vertex v | dist(v)       | parent(v) |
|----------|---------------|-----------|
| а        | 0             | nil       |
| b        | $\infty 	o 2$ | nil 	o a  |
| С        | $\infty$      | nil       |
| d        | $\infty$      | nil       |
| e        | $\infty$      | nil       |
| f        | $\infty$      | nil       |
| g        | $\infty$      | nil       |
| h        | $\infty$      | nil       |
| i        | $\infty$      | nil       |

Relax the out-going edges of b:



| $F = \{a, b\}$ and             |
|--------------------------------|
| $P = \{c, d, e, f, g, h, i\}.$ |
| Pick h and relay (h d          |

| vertex v | dist(v)        | parent(v)             |
|----------|----------------|-----------------------|
| а        | 0              | nil                   |
| Ь        | 2              | а                     |
| С        | $\infty$       | nil                   |
| d        | $\infty \to 5$ | $nil 	o oldsymbol{b}$ |
| e        | $\infty$       | nil                   |
| f        | $\infty$       | nil                   |
| g        | $\infty$       | nil                   |
| h        | $\infty$       | nil                   |
| i        | $\infty$       | nil                   |

Relax the out-going edges of d:



$$F = \{a, b, d\}$$
 and  $P = \{c, e, f, g, h, i\}$ .  
Pick  $d$  and relax  $(d, c)$  and  $(d, e)$ .

| vertex v | dist(v)                | parent(v)             |
|----------|------------------------|-----------------------|
| а        | 0                      | nil                   |
| Ь        | 2                      | а                     |
| С        | $\infty 	o 	extbf{12}$ | $nil 	o 	extstyle{d}$ |
| d        | 5                      | Ь                     |
| e        | $\infty 	o 6$          | $nil 	o 	extstyle{d}$ |
| f        | $\infty$               | nil                   |
| g        | $\infty$               | nil                   |
| h        | $\infty$               | nil                   |
| i        | $\infty$               | nil                   |

Relax the out-going edges of e:



$$F = \{a, b, d, e\}$$
 and  $P = \{c, f, g, h, i\}.$ 

| vertex v | dist(v)       | parent(v)             |
|----------|---------------|-----------------------|
| a        | 0             | nil                   |
| Ь        | 2             | a                     |
| С        | 12            | d                     |
| d        | 5             | Ь                     |
| e        | 6             | d                     |
| f        | $\infty 	o 7$ | $nil 	o 	extcolor{e}$ |
| g        | $\infty$      | nil                   |
| h        | $\infty$      | nil                   |
| i        | $\sim$        | nil                   |

## Relax the out-going edges of f.



$$F = \{a, b, d, e, f\}$$
 and  $P = \{c, g, h, i\}$ .

| vertex v | dist(v)            | parent(v)          |
|----------|--------------------|--------------------|
| а        | 0                  | nil                |
| Ь        | 2                  | а                  |
| С        | 12 → <del>10</del> | $d \rightarrow f$  |
| d        | 5                  | Ь                  |
| e        | 6                  | d                  |
| f        | 7                  | е                  |
| g        | $\infty$           | nil                |
| h        | $\infty 	o 11$     | $nil 	o 	extit{f}$ |
| i        | $\infty$           | nil                |

## Relax the out-going edges of c:



$$F = \{a, b, c, d, e, f\}$$
 and  $P = \{g, h, i\}.$ 

| vertex v | dist(v)  | parent(v) |
|----------|----------|-----------|
| a        | 0        | nil       |
| Ь        | 2        | a         |
| С        | 10       | f         |
| d        | 5        | Ь         |
| e        | 6        | d         |
| f        | 7        | e         |
| g        | $\infty$ | nil       |
| h        | 11       | f         |
| i        | $\infty$ | nil       |

Relax the out-going edges of *h*:



$$F = \{a, b, c, d, e, f, h\}$$
 and  $P = \{g, i\}.$ 

| vertex v | dist(v)        | parent(v)                       |
|----------|----------------|---------------------------------|
| a        | 0              | nil                             |
| Ь        | 2              | а                               |
| С        | 10             | f                               |
| d        | 5              | Ь                               |
| e        | 6              | d                               |
| f        | 7              | e                               |
| g        | $\infty 	o 12$ | $nil 	o 	extstyle{	extstyle h}$ |
| h        | 11             | f                               |
| i        | $\infty 	o 15$ | $nil 	o 	extstyle{	extstyle h}$ |

Relax the out-going edges of g:



$$F = \{a, b, c, d, e, f, g, h\}$$
 and  $P = \{i\}.$ 

| vertex v | dist(v)          | parent(v)         |
|----------|------------------|-------------------|
| а        | 0                | nil               |
| Ь        | 2                | а                 |
| С        | 10               | f                 |
| d        | 5                | Ь                 |
| e        | 6                | d                 |
| f        | 7                | e                 |
| g        | 12               | h                 |
| h        | 11               | f                 |
| i        | 15  ightarrow 14 | $h \rightarrow g$ |

Relax the out-going edges of i:



$$F = \{a, b, c, d, e, f, g, h, i\}$$
 and  $P = \{\}$ . Done.

| vertex $v$ | dist(v) | parent(v) |
|------------|---------|-----------|
| a          | 0       | nil       |
| Ь          | 2       | a         |
| С          | 10      | f         |
| d          | 5       | Ь         |
| e          | 6       | d         |
| f          | 7       | e         |
| g          | 12      | h         |
| h          | 11      | f         |
| i          | 14      | g         |