
CSCI2100/ESTR2102: Midterm

Name: Student ID:

Problem 1. (10%) Prove 1000 log2 n = O(n).

Answer. 1000 log2 n ≤ 1000n for all n ≥ 1.

Problem 2. (15%) Consider a function f(n) satisfying f(1) = 1 and f(n) = 4 · f(n/2) + n2
√
n

for n ≥ 2. Prove: f(n) = O(n3).

Answer. The recurrence conforms to the template in Master’s Theorem with α = 4, β = 2, γ = 2.5.
As logβ α = 2 < γ, the theorem tells us f(n) = O(nγ) = O(n2.5). The claim follows from the fact
that n2.5 = O(n3).

Problem 3 (10 marks). Suppose that we use binary search to find 90 in the sorted array
A = (5, 12, 35, 43, 55, 78, 82, 90). Describe the sequence of integers in A that are compared to 90.

Solution. 43, 78, 82, 90.

Problem 4. (15%) Let S1 and S2 be two sets of integers, each with size n. Design an algorithm
to report the distinct integers in S1 ∪ S2 using O(n log n) time. For example, if S1 = {1, 5, 6, 9, 10}
and S2 = {5, 7, 10, 13, 15}, you should output: 1, 5, 6, 7, 9, 10, 13, 15.

Answer. Sort S1 and S2 in O(n log n) time. Then, merge the two sorted sets into one array A with
length 2n, where the integers are arranged in non-descending order. Scan A by the sorted order.
For each integer e seen, output e if e is different from the its preceding integer in A.



Problem 5 (15 marks). An integer n is cubic if it equals m3 for some integer m (e.g., 8 and 27
are cubic but 36 is not). You are given a positive integer n ≥ 2. Design an algorithm to determine
whether n is cubic in O(log n) time.

Answer. We aim to find the largest integer x ∈ [1,m] such that x3 ≤ n. Then, n is cubic if and
only if n = x3. We can find x through binary search. First, set a = 1 and b = n. Iterative the
following steps until a = b:

• Set x = (a+ b)/2.

• If x3 ≤ n, set a = x.

• Otherwise, return b = x− 1.

When a = b, then x = a is the value we want to find.

Problem 6 (15 marks). Let S1 be a set of n integers, and S2 another set of log2 n integers (n is
a power of 2). Each set is given in an array which is not sorted. Report, for every integer e ∈ S1, its
predecessor in S2. Your algorithm must finish in O(n log log n) time.

For example if S1 = {15, 6, 12, 18} and S2 = {16, 7}, then you should output: (15, 7) (meaning 7
is the predecessor of 15 in S2), (6, -) (meaning 6 has no predecessor in S2), (12, 7), (18, 16).

Answer. Sort S2. For each element e ∈ S1, perform binary search on S2 to find the predecessor of
e in S2.

Problem 7 (20 marks). Let S1 be a set of n integers, and S2 another set of log2 n integers (n is
a power of 2). Each set is given in an array which is not sorted. Report, for every integer e ∈ S2,
how many integers in S1 are greater than or equal to e. Your algorithm must finish in O(n log log n)
time.

For example if S1 = {15, 6, 12, 18} and S2 = {16, 7}, then you should output: (16, 1), (7, 3)
because S1 has only one integer ≥ 16 but has 3 integers ≥ 7.

Answer. For each element e ∈ S2, obtain a counter ce which equals how many integers in S2 have
e as the predecessor in S2. For instance, in our example, the counter of 16 is 1 because only one
integer (i.e., 18) in S2 has 16 as its predecessor in S2; similarly, the counter of 7 is 2. These counters
can be obtained by slightly modifying the algorithm in Problem 6 (every time an element in S1
finds e ∈ S2 as the predecessor, increase ce by 1).

For each element e ∈ S2, we want to obtain a suffix counter se, which adds up the counters of all
the elements in S2 greater than or equal to e. The value of se is precisely the number of elements
in S1 larger than or equal to e. For instance, in our example, the suffix counter of 7 is 3, which
adds up the counters of 7 and 16. If e is the largest element in S2, se = ce. For a general element
e ∈ S2, se = ce + se′ where e′ is the element succeeding e in S2. This gives the following algorithm
for obtaining all the suffix counters:

1. s = 0
2. for e ∈ S2 in descending order do
3. s← s+ ce
4. output (e, s)

2


